Toelatingsnummer 11483 N

Admire  

 

11483 N

 

 

 

 

 

 

 

 

HET COLLEGE VOOR DE TOELATING VAN

GEWASBESCHERMINGSMIDDELEN EN BIOCIDEN

 

1 WIJZIGING TOELATING

 

Gelet op het verzoek d.d. 1 juni 2011 (20110601 WGGAG) van

 

Bayer CropScience B.V.

Energieweg 1

3641 RT  MIJDRECHT

 

 

tot wijziging van de toelating als bedoeld in artikel 28, eerste lid, Wet gewasbeschermingsmiddelen en biociden van het gewasbeschermingsmiddel, op basis van de werkzame stof imidacloprid

 

Admire

 

gelet op artikel 121, eerste lid, jo. artikel 41, tweede lid, Wet gewasbeschermingsmiddelen en biociden,

 

BESLUIT HET COLLEGE als volgt:

 

1.1  Wijziging toelating

De toelating van het middel Admire is laatstelijk bij besluit d.d. 27 oktober 2006 verlengd tot
31 januari 2014. De toelating van het middel Admire wordt gewijzigd en is met ingang van datum dezes toegelaten voor de in bijlage I genoemde toepassingen. Voor de gronden van dit besluit wordt verwezen naar bijlage II bij dit besluit.

 

1.2  Samenstelling, vorm en verpakking

De toelating geldt uitsluitend voor het middel in de samenstelling, vorm en de verpakking als waarvoor de toelating is verleend.

 

1.3  Gebruik

Het middel mag slechts worden gebruikt met inachtneming van hetgeen in bijlage I onder A bij dit besluit is voorgeschreven.

 

1.4 Classificatie en etikettering

Gelet op artikel 29, eerste lid, sub d, Wet gewasbeschermingsmiddelen en biociden,

 

1.    De aanduidingen, welke ingevolge artikelen 9.2.3.1 en 9.2.3.2 van de Wet milieubeheer en artikelen 14, 15a, 15b, 15c en 15e van de Nadere regels verpakking en aanduiding milieugevaarlijke stoffen en preparaten op de verpakking moeten worden vermeld, worden hierbij vastgesteld als volgt:

 

aard van het preparaat: Water dispergeerbaar granulaat

 

werkzame stof:

gehalte:

imidacloprid

70 %

 

 

 

letterlijk en zonder enige aanvulling:

 

andere zeer giftige, giftige, bijtende of schadelijke stof(fen):  

-

 

gevaarsymbool:

aanduiding:

Xn

Schadelijk

 

 

Waarschuwingszinnen: 

 

R22                 -Schadelijk bij opname door de mond.

 

 

Veiligheidsaanbevelingen:

 

S21                 -Niet roken tijdens gebruik.

S36/37d-NL    -Draag geschikte handschoenen en beschermende kleding, ook bij werkzaamheden aan behandeld gewas.

S46                 -In geval van inslikken onmiddellijk een arts raadplegen en verpakking of etiket tonen.

 

Specifieke vermeldingen:

 

DPD01            -Volg de gebruiksaanwijzing om gevaar voor mens en milieu te voorkomen.

 

  1. Behalve de onder 1. bedoelde en de overige bij de Wet Milieugevaarlijke Stoffen en Nadere regels verpakking en aanduiding milieugevaarlijke stoffen en preparaten voorge­schreven aanduidingen en vermeldingen moeten op de verpakking voorkomen:

 

§         letterlijk en zonder enige aanvulling:
het wettelijk gebruiksvoorschrift
De tekst van het wettelijk gebruiksvoorschrift is opgenomen in Bijlage I, onder A.

 

§         hetzij letterlijk, hetzij naar zakelijke inhoud:
de gebruiksaanwijzing
De tekst van de gebruiksaanwijzing is opgenomen in Bijlage I, onder B.
De tekst mag worden aangevuld met technische aanwijzingen voor een goede bestrijding mits deze niet met die tekst in strijd zijn
.

 

§         bij het toelatingsnummer een cirkel met daarin de aanduiding W.13.

 

1.5 Aflever- en opgebruiktermijn

Op grond van artikel 41, vijfde lid, Wet gewasbeschermingsmiddelen en biociden en het Besluit bestuursreglement regeling toelating gewasbeschermingsmiddelen en biociden Ctgb 2007, mag het middel Admire met vorige etiketten:

1.      voor de periode van 8 juli 2011 tot 8 september 2011 nog worden gebruikt en in voorraad of voorhanden worden gehouden;

2.      voor de periode van 8 juli 2011 tot 8 september 2011 nog op de markt worden gebracht.

De onderbouwing van de termijnen is opgenomen in Hoofdstuk 4 van dit besluit.

 

 

2 DETAILS VAN HET VERZOEK EN DE TOELATING

 

2.1 Verzoek

De gevraagde wijzigingen in het Wettelijke Gebruiksvoorschrift en Gebruiksaanwijzing betreffen (zie cursieve tekst):“Toegestaan is uitsluitend het gebruik als insectenbestrijdingsmiddel:

e)

In de onbedekte teelt van bloemisterijgewassen

-         door middel van een gewasbehandeling vóór de bloemknoppen zichtbaar zijn, met dien verstande dat er binnen 6 maanden na toepassen geen voor bijen aantrekkelijke gewassen geplant of gezaaid worden;

-         door middel van een gewasbehandeling na de bloei, met dien verstande dat er binnen 1 maand na toepassen geen voor bijen aantrekkelijke gewassen geplant of gezaaid worden;

f)

in de onbedekte teelt van en ten behoeve van de teelt van bloembol-, knol-, knolbloem- en bolbloemgewassen

-         door middel van een éénmalige gewasbehandeling vóór de bloemknoppen zichtbaar zijn;

-         door middel van een gewasbehandeling na de bloei of na het koppen, met dien verstande dat toepassing alleen is toegestaan indien er binnen 1 maand na toepassen geen voor bijen aantrekkelijke gewassen geplant of gezaaid worden;

h)

in de onbedekte teelt van en ten behoeve van de onbedekte teelt van bloembol-, knol-, knolbloem- en bolbloemgewassen met uitzondering van grofbollige narcissen door middel van een dompelbehandeling, met dien verstande dat bloei moet worden voorkomen en niet meer dompelvloeistof wordt gebruikt dan in de gebruiksaanwijzing is aangegeven, en er binnen 10 maanden na planten geen voor bijen aantrekkelijke gewassen geplant of gezaaid worden;

j)

in de onbedekte teelt van boomkwekerijgewassen en vaste planten

-         door middel van een gewasbehandeling, met dien verstande dat in gewassen die in bloei kunnen komen toepassing is toegestaan vóór de bloemknoppen zichtbaar zijn en indien er binnen 6 maanden na toepassen geen voor bijen aantrekkelijke gewassen geplant of gezaaid worden;

-         door middel van een gewasbehandeling, met dien verstande dat in gewassen die in bloei kunnen komen toepassing is toegestaan na de bloei en indien er binnen 1 maand na toepassen geen voor bijen aantrekkelijke gewassen geplant of gezaaid worden;

 


 

Gevaarlijk voor bijen en hommels. Om de bijen en andere bestuivende insecten te beschermen mag u dit product niet gebruiken op in bloei staande gewassen of op niet-bloeiende gewassen wanneer deze actief bezocht worden door  bijen en hommels. Gebruik dit product niet wanneer  bloeiende onkruiden aanwezig zijn. Verwijder onkruid voordat het bloeit. Na een spuittoepassing percelen nog minimaal twee weken vrijhouden van bloeiende onkruiden. Gebruik is wel toegestaan op bloeiende planten in de kas mits er geen bijen of hommels in de kas actief naar voedsel zoeken. Voorkom dat bijen en andere bestuivende insecten de kas binnenkomen door bijvoorbeeld alle openingen met insectengaas af te sluiten.

 

Let op: dit middel kan schadelijk zijn voor bestuivers in kasteelten. Raadpleeg uw leverancier van bestuivers over het gebruik van dit middel in combinatie met het gebruik van bestuivers en over de in acht te nemen wachttijden.

 

Om bijen te beschermen is toepassing in de teelt van appel en peer op percelen die niet grenzen aan oppervlaktewater uitsluitend toegestaan indien gebruik wordt gemaakt van één van de onderstaande driftreducerende maatregelen:

 

Vóór 1 mei (kaal)

-                                     Tunnelspuit.

-                                     Dwarsstroomspuit + venturidop + éénzijdige bespuiting laatste bomenrij.

-                                     Wannerspuit met reflectiescherm.

Vanaf 1 mei (volblad)

-                      Tunnelspuit.

-                      Dwarsstroomspuit + éénzijdige bespuiting laatste bomenrij.

-                      Dwarsstroomspuit + reflectiescherm.

-                      Dwarsstroomspuit + sensorbesturing.

-                      Wannerspuit met reflectiescherm.”

 

 

Gezien de aard van het wijzigingsverzoek omvat de risicobeoordeling voor ecotoxicologie enkel het aspect ‘risico voor bijen’.

 

2.2 Informatie met betrekking tot de stof

De werkzame stof imidacloprid is per 1 augustus 2008 geplaatst op Annex van Gewasbeschermingsrichtlijn 91/414/EEG (2008/116/EC).

 

2.3 Karakterisering van het middel

Admire is een systemische insectenbestrijdingsmiddel, op basis van de werkzame stof imidacloprid, met contact- en maagwerking op het insect. Imidacloprid behoort tot de groep der chloronicotinylverbindingen. De werking berust op de interferentie in de zenuwprikkel- overdracht. Het middel heeft een werkingsduur van enkele weken tot een paar maanden.

 

3  RISICOBEOORDELINGEN

Het gebruikte toetsingskader voor de beoordeling van deze aanvraag is weergegeven in de RGB.

 

3.1  Fysische en chemische eigenschappen

Gelet op de aard van het verzoek is dit aspect niet beoordeeld. De fysische en chemische eigenschappen wijzigen niet (zie Hoofdstuk 2, Physical and Chemical Properties, in Bijlage II bij dit besluit).

 

3.2  Analysemethoden

Gelet op de aard van het verzoek is dit aspect niet beoordeeld (zie Hoofdstuk 3, Methods of Analysis, in Bijlage II bij dit besluit).

 

3.3  Risico voor de mens

Gelet op de aard van het verzoek is dit aspect niet beoordeeld (zie Hoofdstuk 5, Residues in bijlage II behorende bij dit besluit.

 

3.4  Risico voor het milieu

Het middel voldoet aan de voorwaarde dat het, rekening houdend met alle normale omstandigheden waaronder het middel kan worden gebruikt en de gevolgen van het gebruik, voor bijen geen onaanvaardbaar effect heeft.

Gelet op de aard van het verzoek is het aspect Environmental Fate and Behaviour niet beoordeeld (zie Hoofdstuk 6, Environmental Fate and Behaviour). De beoordeling van het aspect Ecotoxicology staat vermeld in Bijlage II, Hoofdstuk 7 bij dit besluit.

 

3.5  Werkzaamheid

Gelet op de aard van het verzoek is dit aspect niet beoordeeld (zie Hoofdstuk 8, Efficacy, in Bijlage II bij dit besluit.

 

3.6  Eindconclusie

Bij gebruik volgens het gewijzigde Wettelijk Gebruiksvoorschrift/Gebruiksaanwijzing is het middel Admire op basis van de werkzame stof imidacloprid voldoende werkzaam en heeft het geen schadelijke uitwerking op de gezondheid van de mens en het milieu (artikel 28, Wet gewasbeschermingsmiddelen en biociden).

 

 

4 AFLEVER- EN/OF OPGEBRUIKTERMIJN 

 

Uit oogpunt van bestuurlijke zorgvuldigheid is het van eminent belang dat de toelatinghouder, de distributeurs (waaronder detailhandel) en de gebruikers reëel in staat moeten worden gesteld om de nodige maatregelen te nemen zonder direct in overtreding te zijn. Dit belang is afgewogen tegen het milieubelang (met name van bijen) en de mate waarin effecten mogelijk optreden.

Het College besluit de opgebruik- en aflevertermijn op 2 maanden te stellen.


Degene wiens belang rechtstreeks bij dit besluit is betrokken kan gelet op artikel 119, eerste lid, Wet gewasbeschermingsmiddelen en biociden en artikel 7:1, eerste lid, van de Algemene wet bestuursrecht, binnen zes weken na de dag waarop dit besluit bekend is gemaakt een bezwaarschrift indienen bij: het College voor de toelating van gewasbeschermingsmiddelen en biociden (Ctgb), Postbus 217, 6700 AE WAGENINGEN. Het Ctgb heeft niet de mogelijkheid van het elektronisch indienen van een bezwaarschrift opengesteld.

 

 

Wageningen, 8 juli 2011

 

 

HET COLLEGE VOOR DE TOELATING VAN  GEWASBESCHERMINGSMIDDELEN EN  BIOCIDEN,





dr. D. K. J. Tommel

voorzitter

 

 



Dit middel is uitsluitend bestemd voor professioneel gebruik

 

HET COLLEGE VOOR DE TOELATING VAN GEWASBESCHERMINGSMIDDELEN EN BIOCIDEN

 

BIJLAGE I  bij het besluit d.d. 8 juli 2011 tot wijziging van de toelating van het middel Admire, toelatingnummer 11483 N

 

 


A.

WETTELIJK GEBRUIKSVOORSCHRIFT

Toegestaan is uitsluitend het gebruik als insectenbestrijdingsmiddel:

a)

in de teelt van appels en peren door middel van een gewasbehandeling met een maximum aantal behandelingen van totaal twee keer per seizoen, met dien verstande dat toepassing alleen is toegestaan vóór de bloei tot en met het muizenoorstadium alsmede na de bloei van appel en peer;

b)

in de bedekte teelt van aubergine, augurk, courgette, komkommer, tomaat, Spaanse peper en paprika, met dien verstande dat het middel slechts centraal met de voedingsoplossing c.q. door middel van directe kraanvak-injectie mag worden meegegeven, met dien verstande dat het middel op de dag van de oogst niet vóór de oogst mag worden toegepast. Deze toepassingen zijn enkel toegestaan in kassen met een volledig gesloten recirculatiesysteem;

c)

bij de opkweek van plantmateriaal (bedekte teelt) van aubergine, augurk, courgette, komkommer, tomaat, Spaanse peper en paprika door middel van een gewasbehandeling;

d)

in de bedekte teelt van bloemisterijgewassen door middel van een gewasbehandeling en een druppelbehandeling. De druppelbehandelingen zijn enkel toegestaan in kassen met een volledig gesloten recirculatiesysteem;

e)

In de onbedekte teelt van bloemisterijgewassen

-         door middel van een gewasbehandeling vóór de bloemknoppen zichtbaar zijn, met dien verstande dat er binnen 6 maanden na toepassen geen voor bijen aantrekkelijke gewassen geplant of gezaaid worden;

-         door middel van een gewasbehandeling na de bloei, met dien verstande dat er binnen 1 maand na toepassen geen voor bijen aantrekkelijke gewassen geplant of gezaaid worden;

f)

in de onbedekte teelt van en ten behoeve van de teelt van bloembol-, knol-, knolbloem- en bolbloemgewassen

-         door middel van een éénmalige gewasbehandeling vóór de bloemknoppen zichtbaar zijn;

-         door middel van een gewasbehandeling na de bloei of na het koppen, met dien verstande dat toepassing alleen is toegestaan indien er binnen 1 maand na toepassen geen voor bijen aantrekkelijke gewassen geplant of gezaaid worden;

g)

in de bedekte teelt van en ten behoeve van de teelt van bloembol-, knol-, knolbloem- en bolbloemgewassen door middel van een gewasbehandeling;

h)

in de onbedekte teelt van en ten behoeve van de onbedekte teelt van bloembol-, knol-, knolbloem- en bolbloemgewassen met uitzondering van grofbollige narcissen door middel van een dompelbehandeling, met dien verstande dat bloei moet worden voorkomen en niet meer dompelvloeistof wordt gebruikt dan in de gebruiksaanwijzing is aangegeven, en er binnen 10 maanden na planten geen voor bijen aantrekkelijke gewassen geplant of gezaaid worden;

i)

in de bedekte teelt van en ten behoeve van de bedekte teelt van bloembol-, knol-, knolbloem- en bolbloemgewassen met uitzondering van grofbollige narcissen en lelie door middel van een dompelbehandeling;

j)

in de onbedekte teelt van boomkwekerijgewassen en vaste planten

-         door middel van een gewasbehandeling, met dien verstande dat in gewassen die in bloei kunnen komen toepassing is toegestaan vóór de bloemknoppen zichtbaar zijn en indien er binnen 6 maanden na toepassen geen voor bijen aantrekkelijke gewassen geplant of gezaaid worden;

-         door middel van een gewasbehandeling, met dien verstande dat in gewassen die in bloei kunnen komen toepassing is toegestaan na de bloei en indien er binnen 1 maand na toepassen geen voor bijen aantrekkelijke gewassen geplant of gezaaid worden;

k)

in de bedekte teelt van boomkwekerijgewassen en vaste planten door middel van een gewasbehandeling.

 

Gevaarlijk voor bijen en hommels. Om de bijen en andere bestuivende insecten te beschermen mag u dit product niet gebruiken op in bloei staande gewassen of op niet-bloeiende gewassen wanneer deze actief bezocht worden door  bijen en hommels. Gebruik dit product niet wanneer  bloeiende onkruiden aanwezig zijn. Verwijder onkruid voordat het bloeit. Na een spuittoepassing percelen nog minimaal twee weken vrijhouden van bloeiende onkruiden. Gebruik is wel toegestaan op bloeiende planten in de kas mits er geen bijen of hommels in de kas actief naar voedsel zoeken. Voorkom dat bijen en andere bestuivende insecten de kas binnenkomen door bijvoorbeeld alle openingen met insectengaas af te sluiten.

 

Let op: dit middel kan schadelijk zijn voor bestuivers in kasteelten. Raadpleeg uw leverancier van bestuivers over het gebruik van dit middel in combinatie met het gebruik van bestuivers en over de in acht te nemen wachttijden.

 

Dit middel is schadelijk voor niet-doelwitarthropoden. Vermijd onnodige blootstelling.


 

Om in het water levende organismen en bijen te beschermen is toepassing in de teelt van appel en peer als insecticide op percelen die grenzen aan oppervlaktewater uitsluitend toegestaan indien gebruik wordt gemaakt van één van de onderstaande driftreducerende maatregelen:

 

Vóór 1 mei (kaal)

-           Venturidop + éénzijdige bespuiting laatste bomenrij; ventilatorstand uit.

-           Wannerspuit met reflectiescherm + venturidop.

Vanaf 1 mei (volblad)

-           Tunnelspuit.

-           Combinatie windhaag op de rand van het rijpad en éénzijdige bespuiting van de laatste bomenrij.

-           Venturidop + éénzijdige bespuiting laatste bomenrij; ventilatorstand aan.

-           Wannerspuit met reflectiescherm + venturidop.

 

Om bijen te beschermen is toepassing in de teelt van appel en peer op percelen die niet grenzen aan oppervlaktewater uitsluitend toegestaan indien gebruik wordt gemaakt van één van de onderstaande driftreducerende maatregelen:

 

Vóór 1 mei (kaal)

-                                     Tunnelspuit.

-                                     Dwarsstroomspuit + venturidop + éénzijdige bespuiting laatste bomenrij.

-                                     Wannerspuit met reflectiescherm.

Vanaf 1 mei (volblad)

-                      Tunnelspuit.

-                      Dwarsstroomspuit + éénzijdige bespuiting laatste bomenrij.

-                      Dwarsstroomspuit + reflectiescherm.

-                      Dwarsstroomspuit + sensorbesturing.

-                      Wannerspuit met reflectiescherm.

 

 

Dit middel is uitsluitend bestemd voor professioneel gebruik.

 

Veiligheidstermijn


De termijn tussen de laatste toepassing en de oogst mag niet korter zijn dan:

2 weken voor appels en peren.

 

 

B.

GEBRUIKSAANWIJZING

 

Attentie
Bijen kunnen actief vliegen op niet-bloeiende gewassen, bijvoorbeeld om honingdauw te verzamelen die door luizen is afgescheiden.

 

Algemeen
ADMIRE is een systemisch middel, het middel wordt bij de druppelbehandeling door de wortels opgenomen en bij de gewasbehandeling door de bladeren en vervolgens in de plant verspreid. De werkingssnelheid wordt mede bepaald door de activiteit van het gewas. Laat in geval van substraatteelt, voordat u het middel toepast, het gewas de matten wat droogtrekken. Dit bevordert de opname. Het middel dient met de voedingsoplossing te worden meegedruppeld.

Het verdient aanbeveling bij gebruik in siergewassen eerst door een proefbespuiting vast te stellen of de in aanmerking komende variëteiten het middel goed verdragen.

 

Toepassingen

 

Appel en peer, ter bestrijding van de groene appelwants (Lygus pabulinus).
Bij aanwezigheid van larven van de groene appelwants, indien noodzakelijk, een bestrijding uitvoeren.
Dosering: 0,01%

 

Appel, ter bestrijding van de roze appelluis (Dysaphis plantaginea).
Bij aanwezigheid van ingekrulde luizen, indien noodzakelijk, een bestrijding uitvoeren. Indien in de zomer blijkt dat roze appelluis onvoldoende is bestreden, kan gedurende de zomer ook een bestrijding worden uitgevoerd. Ingekrulde luizen worden goed bestreden.
Dosering: 0,01%

 

Peer, ter bestrijding van de roze perenluis (Dysaphis pyri).
Bij aanwezigheid van de roze perenluis, indien noodzakelijk, een bestrijding uitvoeren.
Dosering: 0,01%

 

Peer, ter bestrijding van de vouwgalluis (Anuraphis farfarae).
Bij aanwezigheid van de vouwgalluis, indien noodzakelijk, een bestrijding uitvoeren.
Dosering: 0,01%

 

Appel, ter bestrijding van de groene appeltakluis (Aphis pomi).
Bij aanwezigheid van groene appeltakluis, indien noodzakelijk, een bestrijding uitvoeren.
Dosering: 0,01%

 

Appel, ter bestrijding van de fluitekruidluis (Dysaphis anthrisci).
Bij aanwezigheid van de fluitekruidluis, indien noodzakelijk, een bestrijding uitvoeren.
Dosering: 0,01%

 

Appel, ter bestrijding van de bloedvlekkenluis (Dysaphis devecta).
Bij aanwezigheid van bloedvlekkenluis, indien noodzakelijk, een bestrijding uitvoeren.
Dosering: 0,01%

 

Appel, ter bestrijding van de appel-grasluis (Rhopalosiphum insertum).
Bij aanwezigheid van appel-grasluis, indien noodzakelijk, een bestrijding uitvoeren.
Dosering: 0,01%

 

Appel, ter bestrijding van de appelzaagwesp.

Bij het vinden van de prikken van de appelzaagwesp gedurende de bloei van appel, direct na de bloei een bespuiting uitvoeren.

Dosering: 0,01%

 

Peer, ter bestrijding van de zwarte perenluis (Melanaphis pyaria).
Bij aanwezigheid van zwarte perenluis, indien noodzakelijk, een bestrijding uitvoeren.
Dosering: 0,01%

 

Peer, ter bestrijding van de zwarte bonenluis (Aphis fabae).
Op het moment van aanwezigheid van de kolonies van de zwarte bonenluis, indien noodzakelijk, een bestrijding uitvoeren.
Dosering: 0,01%


 

Peer, ter bestrijding van de perenzaagwesp.

Bij het vinden van de prikken van de perenzaagwesp gedurende de bloei van peer, direct na de bloei een bespuiting uitvoeren.

Dosering: 0,01%

 

Het middel toepassen met ruim water. Toevoeging van uitvloeier kan de effectiviteit verbeteren.

 

In de bedekte teelt van aubergine, augurk, courgette, komkommer, tomaat, Spaanse peper en paprika op kunstmatig substraat, ter bestrijding van boterbloemluis (Aulacorthum solanii), groene en rode perzikluis (Myzus persicae), katoenluis (Aphis gossypii) en zwarte bonenluis (Aphis fabae).
Zodra een aantasting wordt waargenomen een behandeling uitvoeren.
Dosering: 3,5 gram per 1000 planten

 

In de bedekte teelt van aubergine, augurk, courgette, komkommer, tomaat, Spaanse peper en paprika op kunstmatig substraat, ter bestrijding van larven van kaswittevlieg (Trialeurodes vaporariorum).

Zodra een aantasting wordt waargenomen een behandeling uitvoeren.
Dosering: 14 gram middel per 1000 planten

Het verdient aanbeveling middels een proefbehandeling vast te stellen of het gewas de behandeling verdraagt.

 

Plantmateriaal van aubergine, augurk, courgette, komkommer, tomaat, Spaanse peper en paprika, ter bestrijding van boterbloemluis (Aulacorthum solanii), groene en rode perzikluis (Myzus persicae), katoenluis (Aphis gossypii) en zwarte bonenluis (Aphis fabae).
Zodra een aantasting wordt waargenomen een behandeling uitvoeren.
Dosering: 100 gram per ha

 

In de bedekte teelt van bloemisterijgewassen op kunstmatig substraat, ter bestrijding van boterbloemluis (Aulacorthum solanii), groene en rode perzikluis (Myzus persicae), katoenluis (Aphis gossypii) en zwarte bonenluis (Aphis fabae).
Zodra een aantasting wordt waargenomen een behandeling uitvoeren.
Dosering: 3,5 gram per 1000 planten

 

In de bedekte teelt van bloemisterijgewassen op kunstmatig substraat, ter bestrijding van bladluizen: boterbloemluis, groene perzikluis (incl. rode variant), katoenluis en zwarte bonenluis.
Zodra een aantasting wordt waargenomen, een behandeling uitvoeren. Laat voordat het middel wordt toegepast, het gewas de matten wat droogtrekken. Dit bevordert de opname. Het middel dient met de voedingsoplossing te worden meegedruppeld.
Dosering: 3,5 gram per 1000 planten

 

In de bedekte teelt van bloemisterijgewassen op kunstmatig substraat, ter bestrijding van kaswittevlieg.

Zodra een aantasting wordt waargenomen, een behandeling uitvoeren. Laat voordat het middel wordt toegepast, het gewas de matten wat droogtrekken. Dit bevordert de opname. Het middel dient met de voedingsoplossing te worden meegedruppeld.
Dosering: 14 gram per 1000 planten

 

In de bedekte teelt van bloemisterijgewassen in de grond, ter bestrijding van boterbloemluis (Aulacorthum solanii), groene en rode perzikluis (Myzus persicae), katoenluis (Aphis gossypii) en zwarte bonenluis (Aphis fabae).
Zodra aantasting wordt waargenomen een gewasbehandeling uitvoeren.
Dosering: 0,01% (10 gram per 100 liter water)

 

In de bedekte teelt van bloemisterijgewassen, ter bestrijding van bladluizen: boterbloemluis, groene perzikluis (incl. de rode variant), katoenluis, zwarte bonenluis en ter bestrijding van kaswittevlieg.
Zodra een aantasting wordt waargenomen het middel door een gewasbehandeling toepassen.
Zonodig de bespuiting met een interval van 7-10 dagen herhalen. Bij kaswittevlieg kunnen meer dan twee bespuitingen noodzakelijk zijn.
Dosering: 0,01% (10 gram per 100 liter water)

 

Overjarige bloemisterijgewassen in de vollegrond, ter bestrijding van bladluizen: boterbloemluis, groene perzikluis (incl. de rode variant), zwarte bonenluis en ter bestrijding van kaswittevlieg.
Zodra een aantasting wordt waargenomen het middel door een gewasbehandeling toepassen.
Zonodig de bespuiting met een interval van 7-10 dagen herhalen.
Dosering: 0,01% (10 gram per 100 liter water)

 

Bloembol- en bolbloemgewassen (gewasbehandeling), ter bestrijding van groene perzikluis, katoenluis en zwarte bonenluis.
Zodra aantasting wordt waargenomen een gewasbehandeling uitvoeren. De behandeling indien nodig herhalen.
Dosering: 100 gram per ha

 

Gladiolen (gewasbehandeling), ter bestrijding van gladiolentrips.

Bij het verschijnen van het derde blad starten met de bestrijding. De behandeling daarna nog twee keer herhalen met intervallen van 7-10 dagen.

Dosering: 100 gram per ha

 

Dompelbehandeling van bloembollen en bolbloemen

In deze gebruiksaanwijzing is voor de toepassingen voor bloembollenplantgoed steeds uitgegaan van een standaardontsmettingswijze waarbij gestreefd dient te worden naar minimale restanten door opgebruik.

Voor andere toepassingstechnieken (kort dompelen, schuimen e.d.) zullen afgeleide doseringen nodig zijn. Raadpleeg hiervoor de betreffende voorlichtingspublicaties waarin tevens is aangegeven hoe,  de restanten kunnen worden verwerkt.

 

Bloembol- en bolbloemgewassen (dompelbehandeling), ter bestrijding van groene perzikluis, katoenluis en zwarte bonenluis.
Het plantgoed vóór het planten gedurende 15 minuten dompelen. Het plantgoed dient op het moment van behandeling in rust te zijn. Bij gewassen die in het najaar geplant worden of gewassen die op het dompeltijdstip geen wortels hebben, kan tegen het einde van de teelt een aanvullende bestrijding met een insecticide noodzakelijk zijn. Dompelbehandeling indien mogelijk kort voor het planten uitvoeren. Menging met fungiciden is mogelijk.
Dosering: 0,04% (40 gram per 100 liter water) en maximaal 750 liter dompelvloeistof per ha toepassen. Bij gewassen die in het najaar geplant worden en bijgewassen met weinig wortels op het dompeltijdstip, de dosering verhogen tot 0,05% (50 gram per 100 liter dompelvloeistof) en maximaal 600 liter dompelvloeistof per ha toepassen.

 

Gladiolen (dompelbehandeling), ter bestrijding van gladiolentrips tijdens de bewaring van de knollen.

Na het pellen en voor de bewaring de knollen dompelen. Menging met fungiciden is mogelijk.

Dosering: 0,04% (40 gram per 100 liter dompelvloeistof) en maximaal 750 liter dompelvloeistof per ha toepassen


 

In de bedekte teelt van boomkwekerijgewassen en vaste planten, ter bestrijding van bladluizen: boterbloemluis, groene perzikluis (incl. rode variant), katoenluis, zwarte bonenluis, gewone rozeluis, sjalotteluis en groene kortstaartluis.
Zodra een aantasting wordt waargenomen het middel door een gewasbehandeling toepassen.
Zonodig de bespuiting met een interval van 7-10 dagen herhalen.
Dosering: 0,01% (10 gram per 100 liter water)

 

Boomkwekerijgewassen en vaste planten in de vollegrond, ter bestrijding van bladluizen: boterbloemluis, groene perzikluis (incl. rode variant), zwarte bonenluis, gewone rozeluis, sjalotteluis, groene kortstaart- luis, aardappeltopluis, zwarte kerseluis, groene appeltakluis, groene sparreluis, vogelkersluis en beukebladluis.
Zodra een aantasting wordt waargenomen het middel door een gewasbehandeling toepassen.
Zonodig de bespuiting met een interval van 7-10 dagen herhalen.
Dosering: 0,01% ( 10 gram per 100 liter water)

 

Boomkwekerijgewassen en vaste planten in de vollegrond, ter bestrijding van de buxusbladvlo.

Toepassen zodra de larven uit de wintereieren komen.

Dosering: 0,01% (10 gram per 100 liter water)

 


HET COLLEGE VOOR DE TOELATING VAN GEWASBESCHERMINGSMIDDELEN EN BIOCIDEN

 

BIJLAGE II bij het besluit d.d. 8 juli 2011 tot wijziging van de toelating van het middel Admire, toelatingnummer 11483 N

 

 

 

 

1.

Identity of the plant protection product

2.

Physical and chemical properties

3.

Methods of analysis

4.

Mammalian toxicology

5.

Residues

6.

Environmental fate and behaviour

7.

Ecotoxicologie

8.

Efficacy

9.

Conclusion

10.

Classification and labelling

 

 

 

Reference list


 

 

 

1.                  Identity of the plant protection product

 

1.1       Applicant

Bayer CropScience B.V.

Energieweg 1

3641 RT  MIJDRECHT

 

1.2       Identity of the active substance

The identity of the active substance does not change.

 

1.3       Identity of the plant protection product

The identity of the active substance does not change.

 

1.4       Function

Insecticide.

 

1.5       Uses applied for

The field of uses does not change.

 

1.6       Background to the application

It is an application for label change concerning the safety for bees.

 

1.7       Packaging details

Packaging details do not change.

 

 

2.                  Physical and chemical properties

 

The physical and chemical properties of the plant production product remain unchanged.

 

 

3.                  Methods of analysis

 

n.a.

 

 

4.                  Mammalian toxicology

 

n.a.

 

 

5.                  Residues

 

n.a.

 

 

6.                  Environmental fate and behaviour

 

n.a.

 

 

7.                  Ecotoxicology

 

 

Background

Dit document bevat de beoordeling van het risico voor bijen van de momenteel in Nederland toegelaten middelen Admire (11483) en Admire O-Teq (12942) op basis van imidacloprid. Deze middelen zijn in onderstaande tabel weergeven. De doseringen per toepassing zijn opgenomen in de risicobeoordeling.

 

Toepassingsgebieden van Admire en Admire O-Teq op basis van imidacloprid

toelatingnr

middelnaam

toelatinghouder

werkzame stoffen

dosering

formulering

Toepassing(en)

12942

ADMIRE O-TEQ

Bayer CropScience B.V.

imidacloprid 350G/L

70-105 g a.s./ha – see Table E.1

Olie dispersie

See Table E.1

11483 (parallel: 11547, 13363)

ADMIRE

Bayer CropScience B.V.

imidacloprid 70%

15.7-1960 g a.s./ha – see Table E.2

Water dispergeerbaar granulaat

See Table E.2

 

 

Risk assessment is done in accordance with Chapter 2 of the RGB published in the Government Gazette (Staatscourant) 188 of 28 September 2007, including the update of 20 October 2009, which came into effect on 1 January 2010. The bee risk assessment is also based on the most recent guidance document, which is EPPO 2010. This includes methodology to assess the risk from systemic substances.

 

Imidacloprid is placed on Annex I of 91/414/EEG since 08/2009 (2008/116/EC). In Commission Directive 2010/21/EU, the Inclusion Directive of imidacloprid was amended with additional provisions to avoid accidents with seed treatments. The provisions relevant for honeybees are now as follows:

Part A: For the protection of non-target organisms, in particular honey bees and birds, for use as seed treatment:

- the seed coating shall only be performed in professional seed treatment facilities. Those facilities must apply the best available techniques in order to ensure that the release of dust during application to the seed, storage and transport can be minimised,

- adequate seed drilling equipment shall be used to ensure a high degree of incorporation in soil, minimisation of spillage and minimisation of dust emission.

Member States shall ensure that:

- the label of treated seed includes the indication that the seeds were treated with imidacloprid and sets out the risk mitigation measures provided for in the authorisation,

- the conditions of the authorisation, in particular for spray applications, include, where appropriate, risk mitigation measures to protect honey bees,

- monitoring programmes are initiated to verify the real exposure of honey bees to imidacloprid in areas extensively used by bees for foraging or by beekeepers, where and as appropriate.";

 

For the risk assessment the final LoEP of 05/2009 is used and additional data from the applicant (presented in Appendix I).  Also, information from the public literature is taken into account (presented in Appendix II). Abbreviations are explained in Appendix III.

 

 

During EU review for inclusion of imidacloprid on Annex I of 91/414/EEG, the risks of seed treatment for sugar beet (117 g a..s/ha) and of foliar spray for apples (70 – 105 g a.s./ha) and tomatoes (2x 100-150 g a.s./ha) were assessed. The EFSA has summarised the peer reviewed assessment in the EFSA conclusion, which is shown below. 

 

EFSA conclusion.

A large number of studies with bees including tunnel tests, field and semi-field tests were submitted by the applicant. Imidacloprid is acutely very toxic to bees. The observed LD50 values ranged from 3.7 to >70.3 ng/bee for the acute oral toxicity and from 42.2 to 129 ng/bee for the acute contact toxicity. The acute toxicity of the main plant metabolites was also investigated. The metabolites olefine-imidacloprid and hydroxyl-imidacloprid are very toxic to honey-bees.

 

In addition to the standard acute toxicity tests also chronic tests and studies to investigate sublethal effects (bee behaviour) were conducted. The NOEC values for the dietary exposure were determined as 46 ppb (acute oral toxicity), 50 ppb sublethal effects (learning behaviour), 24 ppb chronic lethal effects and 20 ppb behavioural impacts including bee hive development. It was questioned during the peer-review whether effects on bee-brood are sufficiently addressed. No effects on bee-brood were observed in a number of field tests. The experts agreed that the available studies provide sufficient information to conclude on the representative uses evaluated.

 

The HQ values for oral and contact exposure were far in excess of the HQ trigger value of 50

indicating a high risk to bees from the use as a spray application in orchards and tomatoes.

 

Imidacloprid has a distinct systemic mode of action. Therefore the uptake in plants from soil/seed treatment applications was investigated in different crops (maize, cotton, egg-plant, potato and rice). The plants absorbed up to 20% (maize) of the amount of imidacloprid applied as seed dressing. Imidacloprid is preferentially translocated to leaves and shoots and to a much lower extend to the reproductive organs. The concentrations of imidacloprid and its main plant metabolites were investigated in the nectar and pollen of sunflower where the seeds were treated with 0.7 mg radiolabelled imidacloprid/seed. Only imidacloprid was found in the study but no plant metabolites (limit of detection was 0.1 ppb). Imidacloprid concentrations measured in pollen and nectar of different crops from different locations in Europe suggest that it is likely that residue levels in nectar of pollen will not exceed 5 ppb for the seed dressing uses currently registered in Europe. It was noted by the experts that extrapolation of measured residues to other crops is uncertain and should be interpreted with caution. No major soil metabolites were detected in the soil degradation studies. Bees would therefore only be exposed to imidacloprid residues in succeeding crops.

 

In order to assess the risk from application as a seed treatment the RMS calculated TER values on the basis of NOEC values from the available studies for the acute oral toxicity, sublethal effects (learning behaviour), chronic lethal effects and chronic behavioural impacts including bee hive development as 46, 50, 24 and 20 ppb. These NOECs were compared to residue levels in nectar and/or pollen of <5 ppb resulting in TER values of >9.2, >10, >4.8 and >4 indicating a low risk to bees from the representative use as a seed treatment. These findings were confirmed by the field tests where no adverse effects were observed where bees were exposed to flowering sunflowers, rape and maize treated as seeds with imidacloprid. Furthermore sugar beet is harvested before flowering hence no risk to bees is anticipated from the use as a seed treatment in sugar beet.

 

In the expert meeting it was discussed whether adverse long-term effects to bees are sufficiently covered by the risk assessment since the duration of most of the studies was 4-6 weeks. Two studies with a longer duration were available and one study also investigated winter bees. No sublethal effects were observed in the studies below a concentration of 5 ppb. The experts considered the information on long-term effects as sufficient to conclude on the risk from the representative uses evaluated.

 

The risk from exposure to honeydew excreted from aphids was considered as low. The acute oral LD50 for aphids is several orders of magnitude lower than for bees. Therefore it was suggested that it is highly unlikely that aphids would survive exposure to imidacloprid at concentrations in sap which could lead to the excretion of honeydew which is toxic to bees. Therefore it was assumed that appreciable amounts of honeydew will only be present at residue concentrations which are not hazardous for bees. The line of argumentation was agreed by the experts but it was not clear how the toxicity value for aphids was derived and the experts suggested a data gap for the applicant to clarify this point.

 

Overall it is concluded that the spray applications of imidacloprid pose a high risk to bees. Risk

mitigation is required for the use in orchards. The risk to bees is considered to be low if the product is not applied during flowering and if flowering weeds are removed/mown before the product is applied. However it should be noted that bees potentially foraging in the off-crop area would still be exposed via spray drift and hence not be protected by the suggested risk mitigation measure.

 

Flowering tomato plants are visited by honey-bees and other pollinators. The risk mitigation

suggested for orchards is not an option for the use in tomato since the tomato plants flower almost continuously. The RMS informed in a comment that it may be possible to apply risk mitigation measures in tomato e.g. restrict the application to the time before tomatoes start flowering. It was further noted that bumblebees are used in glasshouses to pollinate tomatoes. An appropriate waiting period should be kept before bumblebees are released after treatment. However no data are available for bumblebees to determine the waiting period.

 

As stated, the above EFSA conclusion focussus on the EU uses (foliar spray in apple and tomato, and sugar beet seed treatment). Below, the PPP uses currently allowed in the Netherlands will be assessed. Due to the particular properties of imidacloprid, the following exposure routes will be considered for each product:

- Direct exposure, both in- and off-field

- Indirect exposure, from the crop itself, weeds, succeeding crops, honeydew and guttation.

- Special consideration for the risk of introduced pollinators in greenhouses.

 

Surface water is not considered to be a relevant source of neonicotinoid exposure to honeybees (according to bee experts among which bijen@wur). Bees can take water from larger surface water like ditches, but only occasionally in dry periods in situations with low forage (nectar) availability. Surface water will in most cases be used by the bees for hive climate regulation in warm weather. Exposure of bees to imidacloprid in surface water is expected to be very low.

 

The risk to other bee species (e.g. bumblebees) is expected to be covered by the risk assessment for honeybees, as is the assumption of the current guidance document. However, in some cases this may not be a valid assumption and then the risk to those other species is separately discussed.

 

 

Table E.1 and E.2 show the uses of Admire O-Teq and Admire as they are currently authorised.

 

Table E.1: Intended uses ADMIRE O-TEQ

Uses

Field / Glass-house

Dose a.s.

(kg a.s./ha)

No. of appl.

Int. betw. appl.

Application time (growth stage and season)

Apple against common green capsid bug (Lygus pabulinus), European apple sawfly (Hoplocampa testudinea);

met dien verstande dat toepassing alleen is toegestaan vóór de bloei tot en met het muizenoorstadium alsmede na de bloei van appel en peer;

F

Young crop 0.07
Adult crop 0.105

2

7-14 days

April-July;

Apple against rosy apple aphid (Dysaphis plantaginea), apple aphid (Aphis pomi), rosy leaf-curling aphid (Dysaphid devecta, Dysaphis anthrisci),  apple-grass aphid (Rhopalosiphum insertum;

met dien verstande dat toepassing alleen is toegestaan vóór de bloei tot en met het muizenoorstadium alsmede na de bloei van appel en peer;

F

Young crop 0.07
Adult crop 0.105

2

7-14 days

April-Sept;

Pear against common green capsid bug (Lygus pabulinus), pear sawfly (Hoplocampa brevis);

met dien verstande dat toepassing alleen is toegestaan vóór de bloei tot en met het muizenoorstadium alsmede na de bloei van appel en peer;

F

Young crop 0.07
Adult crop 0.084

2

7-14 days

April-July;

 Pear against pear aphid (Dysaphis pyri), pear coltsfoot aphid (Anuraphis farfarae), Melanaphis pyaria, black bean aphid (Aphis fabae);

met dien verstande dat toepassing alleen is toegestaan vóór de bloei tot en met het muizenoorstadium alsmede na de bloei van appel en peer;

F

Young crop 0.07
Adult crop 0.084

2

7-14 days

April-Sept;

Aubergine, gherkins, courgettes, cucumber, tomato, red pepper, and sweet pepper on artificial substrate (protected culture) against glasshouse potato aphid (Aulacorthum solani), green and red peach aphid (Myzus persicae), cotton aphid (Aphis gossypii), black bean aphid (Aphis fabae)

G

2.45 g a.s./1000 plants

2

1 day

March-Nov

Aubergine, gherkins, courgettes, cucumber, tomato, red pepper, and sweet pepper on artificial substrate (protected culture) against greenhouse whitefly (Trialeurodes vaporariorum)

G

28 ml/1000 plants

2

1 day

March-Nov

Floriculture crops on artificial substrate (protected culture) against glasshouse potato aphid (Aulacorthum solani), green and red peach aphid (Myzus persicae), cotton aphid (Aphis gossypii), black bean aphid (Aphis fabae)

G

2.45 g a.s./1000 plants

2

1 day

March-Nov

Floriculture crops on artificial substrate (protected culture) against greenhouse whitefly (Trialeurodes vaporariorum)

G

9.8 g a.s /1000 plants

2

1 day

March-Nov

Floriculture crops in the open ground (protected culture) against glasshouse potato aphid (Aulacorthum solani), green and red peach aphid (Myzus persicae), cotton aphid (Aphis gossypii), black bean aphid (Aphis fabae)

G

0.084

2

7-10 days

Jan-Dec

Gerbera and chrysanthemum (protected culture) against glasshouse potato aphid (Aulacorthum solani), green and red peach aphid (Myzus persicae), cotton aphid (Aphis gossypii), black bean aphid (Aphis fabae), greenhouse whitefly (Trialeurodes vaporariorum)

G

0.084

2

7-10 days

Jan-Dec

Perennial floriculture crops in the open ground against glasshouse potato aphid (Aulacorthum solani), green and red peach aphid (Myzus persicae), black bean aphid (Aphis fabae), greenhouse whitefly (Trialeurodes vaporariorum);

met dien verstande dat toepassing alleen is toegestaan voor de bloei tot het zichtbaar worden van de eerste bloemknoppen alsmede na de bloei

F

0.084

2

7-10 days

Jan-Dec;

Flower bulb- and bulb flower crops (open field) against green peach aphid (Myzus persicae), cotton aphid (Aphis gossypii), black bean aphid (Aphis fabae);

met dien verstande dat toepassing alleen is toegestaan voor de bloei tot het zichtbaar worden van de eerste bloemknoppen alsmede na de bloei

F

0.07

2

7-10 days

March-Sept;

Flower bulb- and bulb flower crops (protected culture) against green peach aphid (Myzus persicae), cotton aphid (Aphis gossypii), black bean aphid (Aphis fabae)

G

0.07

2

7-10 days

March-Sept;

Flower bulb- and bulb flower crops (dip treatment) against green peach aphid (Myzus persicae), cotton aphid (Aphis gossypii), black bean aphid (Aphis fabae);

met dien verstande dat bloei moet worden voorkomen;

F

0.08%

1

-

Jan-Dec,

 

Gladiolus against gladiolus thrips (Taeniothrips simplex)

F

0.07

3

7-10

May-Sept

Gladiolus against gladiolus thrips (Taeniothrips simplex)

F

0.07

3

7-10

Jan-Dec

Gladiolus (dip treatment) against gladiolus thrips (Taeniothrips simplex)

G

0.08%

1

-

Jan-Dec

Tree nursery crops and perennials (protected culture) against glasshouse potato aphid (Aulacorthum solani), green and red peach aphid (Myzus persicae), cotton aphid (Aphis gossypii), black bean aphid (Aphis fabae), rose aphid (Macrosiphum rosae), shallot aphid (Myzus ascolonicus), plum leaf-curling aphid (Brachycaudys helichrysi)

G

0.07

2

7-10 days

Jan-Dec

Tree nursery crops and perennials in the open ground against glasshouse potato aphid (Aulacorthum solani), green and red peach aphid (Myzus persicae), black bean aphid (Aphis fabae), rose aphid (Macrosiphum rosae), shallot aphid (Myzus ascolonicus), plum leaf-curling aphid (Brachycaudys helichrysi), potato aphid (Macrosiphum euphorbiae), black cherry aphid (Myzus cerasi), apple aphid (Aphis pomi), green spruce aphid (Elatobium abietinum), bird cherry aphid (Rhopalosiphum padi), woolly beech aphid (Phyllaphis fagi);

met dien verstande dat toepassing alleen is toegestaan voor de bloei tot het zichtbaar worden van de eerste bloemknoppen alsmede na de bloei

F

0.084

2

7-10 days

March-Sept,

Tree nursery crops and perennials in the open ground against Boxwood psyllids (Psylla buxi);

met dien verstande dat toepassing alleen is toegestaan voor de bloei tot het zichtbaar worden van de eerste bloemknoppen alsmede na de bloei

F

0.084

1

-

April-May,

Hop against hop vine aphid (Phorodon humuli) (aanstrijkbehandeling)

F

0.032 g a.s./1000 shouts

1

-

May-June

Root growing culture of witloof chicory against lettuce root aphid (Pemphigus bursarius) (spuitbehandeling in zaaivoor)

F

0.0875

1

-

April-May

 

 

Tabel E.2 Toepassingsoverzicht ADMIRE (in Dutch)

Toepassing

Bijzonderheden

Field / Glass-house

Dosering

w.s.

[kg/ha]

Freq.

Interval

[dag]

Tijdstip

appels, peren (jong gewas)

gewasbehandeling, met dien verstande dat toepassing alleen is toegestaan vóór de bloei tot en met het muizenoorstadium alsmede na de bloei van appel en peer;

F

0,0700

2

7

mei-juli

appels

gewasbehandeling, met dien verstande dat toepassing alleen is toegestaan vóór de bloei tot en met het muizenoorstadium alsmede na de bloei van appel en peer;

F

0,1050

2

7

mei-juli

peren

gewasbehandeling, met dien verstande dat toepassing alleen is toegestaan vóór de bloei tot en met het muizenoorstadium alsmede na de bloei van appel en peer;

F

0,0840

3

7

jan-dec

aubergine

substraatteelt, og

G

0,0314

2

50

jan-dec

tomaat

substraatteelt, og

G

0,0392

2

50

jan-dec

paprika

substraatteelt, og

G

0,0588

2

50

jan-dec

augurk

substraatteelt, og

G

0,0353

2

50

jan-dec

courgette

substraatteelt, og

G

0,0157

2

50

jan-dec

komkommer

substraatteelt, og

G

0,0255

2

50

jan-dec

aubergine

substraatteelt, og

G

0,1254

2

50

jan-dec

tomaat

substraatteelt, og

G

0,1568

2

50

jan-dec

paprika

substraatteelt, og

G

0,2352

2

50

jan-dec

augurk

substraatteelt, og

G

0,1411

2

50

jan-dec

courgette

substraatteelt, og

G

0,0627

2

50

jan-dec

komkommer

substraatteelt, og

G

0,1019

2

50

jan-dec

aubergine, tomaat, paprika (opkweek plantmateriaal)

gewasbehandeling, og

G

0,0700

1

0

jan-dec

bloembollen- en bolbloementeelt

gewasbehandeling, met dien verstande dat toepassing alleen is toegestaan voor de bloei tot het zichtbaar worden van de eerste bloemknoppen alsmede na de bloei

F

0,0700

2

7

april-sept

bloembollen- en bollenteelt)

gewasbehandeling og

G

0,0700

2

7

jan-dec

plantgoed bloem- bollenteelt en bolbloementeelt)

dompelbehandeling, met dien verstande dat bloei moet worden voorkomen;

 

F

0,3360

1

0

sep-okt

bloemisterijgewassen overige (grondteelten)

gewasbehandeling, met dien verstande dat toepassing alleen is toegestaan voor de bloei tot het zichtbaar worden van de eerste bloemknoppen alsmede na de bloei

G

0,0700

2

7

jan-dec

Bloemisterijgewassen(roos; grondteelt)

gewasbehandeling, og

G

0,0840

2

7

jan-dec

bloemisterijgewassen

substraatteelt, og

G

0,4900

2

50

jan-dec

bloemisterijgewassen (overjarige teelt/ pot- en perkplanten, vaste-planten, snijbloemen

gewasbehandeling, met dien verstande dat toepassing alleen is toegestaan vóór de bloei tot het zichtbaar worden van de eerste bloemknoppen alsmede na de bloei

F

0,0700

2

7

jan-dec

bloemisterijgewassen

substraatteelt, og

G

1,9600

2

50

jan-dec

bloemisterijgewassen (roos)

gewasbehandeling og

G

0,0840

3

7

hele jaar

bloemisterijgewassen (overige)

gewasbehandeling og

G

0,0700

3

7

hele jaar

boomkwekerijgewassen en vaste planten

gewasbehandeling og

G

0,0700

3

7

hele jaar

boomkwekerijgewassen (laanbomen)

gewasbehandeling, met dien verstande dat toepassing alleen is toegestaan vóór de bloei tot het zichtbaar worden van de eerste bloemknoppen alsmede na de bloei

F

0,0840

3

7

april-sept

boomkwekerijgewassen (overige)

gewasbehandeling, met dien verstande dat toepassing alleen is toegestaan vóór de bloei tot het zichtbaar worden van de eerste bloemknoppen alsmede na de bloei

F

0,0840

3

7

april-sept

boomkwekerijgewassen (vaste planten)

gewasbehandeling, met dien verstande dat toepassing alleen is toegestaan vóór de bloei tot het zichtbaar worden van de eerste bloemknoppen alsmede na de bloei

F

0,0700

3

7

april-sept

 

 

Direct exposure via spray

1) In-field risk

For the spray uses, the first tier risk assessment for bees for direct exposure is based on the ratio between the highest single application rate and toxicity endpoint (LD50 value). An overview of the risk of imidacloprid at the proposed uses is given in Table E.3.

 

Table E.3 Risk for bees of imidacloprid in-field

Use (Field and glasshouse)

Application rate a.s.

LD50

 

HQ

(trigger 50)

 

[g/ha]

[µg/bee]

 [Application rate/LD50]

Admire O-Teq all uses

70- 105

0.0037

18919-28378

Admire all uses

15.7-1960

0.0037

4243-529730

 

 

 

 

 

Table E.3 shows that since the HQ is above 50, there is a potential high in-field risk for bees for all spray uses.

 

1a) Glasshouse uses

Part of the proposed uses is in the glasshouse. To protect bees in glasshouses, restrictions can be included. Exposure to both introduced bees (for pollination service) and bees flying into greenhouses from the outside should be avoided. With the appropiate restriction sentences, the direct risk is considered to be acceptable for the glasshouse uses:

 

Dit middel is gevaarlijk voor bijen en hommels. Gebruik is wel toegestaan op bloeiende planten in de kas mits er geen bijen of hommels in de kas actief naar voedsel zoeken. Voorkom dat bijen en andere bestuivende insecten de kas binnenkomen door bijvoorbeeld alle openingen met insectengaas af te sluiten.

 

Introduced pollinators in greenhouses should be considered specifically. If pollinators are affected, this can harm crop production. Note that for the soil treatments in the glasshouse, no direct exposure is expected but a residual effect may occur.

As highlighted in the EFSA conclusion, information to determine an appropiate waiting period in glasshouses for introduction of bees and bumblebees was not available at the time of the EU review. The applicant has now presented a statement regarding the appropiate waiting period:

 

Imidacloprid is used in/on various crops grown under protection in The Netherlands since many years (>10). These uses include spray and soil applications in/on plants not depending on pollination by bees (e.g. floriculture) and crops where particularly bumble bees are used as pollinators to increase and stabilize fruit production (e.g. solanaceous crops). These uses include imidacloprid soil applications to cucurbits of up to and including 141 g a.s./ha and solanaceous crops with soil applications of up to and including 235 g a.s./ha.

 

In two crop pollination studies under confined conditions, considering imidacloprid soil drip/drench applications of up to 300 g a.s./ha (Doc. No.: M-030167-01-1; ) and 267 g a.s./ha (Doc. No.: M-304435-01-2), it was concluded that the use of imidacloprid does not impair the pollination efficacy of confined bumble bees (for details of the studies see chapter 2.5).

 

Moreover, Bayer CropScience is not aware of complaints or claims of damages by vegetable growers who use both, imidacloprid for aphid and whitefly control and bumble bees for crop pollination. As such, due to several years of coexistence between imidacloprid uses in greenhouses and pollination services provided mainly by bumble bees, Bayer CropScience does not see the imminent need to define on short notice waiting periods in greenhouses to protect pollinators. Nonetheless, in light of the current discussions with Ctgb, Bayer CropScience will propose appropriate waiting periods for the entry of pollinators for those uses, where this is in line with common practice (i.e. tomato and bell pepper).

 

One of the documents referred to, Doc. No.: M-030167-01-1, is a greenhouse trial by Bielza et al. (2000) which is included in the DAR (see LoE, section Field or semi-field tests, other studies). According to the summary in the DAR, in this trial in SE Spain, no adverse effects on pollination (percentages of flowers pollinated, aborted, closed/non-marked and marked, as well as bumblebee flight frequencies) were detected after soil-application of 150 g imidacloprid/ha on flowering tomato.

The second document, Doc. No.: M-304435-01-2, Vacante (1997) was not included in the DAR but it was submitted to Ctgb for this assessment. In this greenhouse trial in Italy, the bumblebees were introduced to the tomato plants 7 days after treatment (soil-application of 178 or 267 g imidacloprid/ha) and no adverse effects on pollination were detected.

However, these studies were performed in Southern-European countries in which the environmental circumstances are different from the Netherlands and are therefore considered to be less relevant.

 

The applicant proposes a two-month waiting period for tomato and bell pepper. For the other crops in greenhouses in which pollinators may be used (courgette, gherkin, aubergine and pepper), no waiting period is necessary according to the applicant based on experience in practice.    

 

However, consultation with pollinator-producing companies Koppert and Biobest and with IPM consultancy IPM Impact showed that side-effects on pollinators from imidacloprid may occur and the appropiate waiting period will depend on many variables such as the crop, the method of application (foliar spray/soil/substrate), the weather (temperature, sunlight), the crop stage etc., and may vary from 14 days to 10 weeks to even longer. Therefore, it is not possible to give specific advice on the label about a waiting period. A generic warning should be indicated on the label:

 

Let op: dit middel kan schadelijk zijn voor bestuivers in kasteelten. Raadpleeg uw leverancier van bestuivers over het gebruik van dit middel in combinatie met het gebruik van bestuivers en over de in acht te nemen wachttijden.

 

With this addition to the Statutory Instructions for Use, the risk to introduced pollinators in greenhouses is acceptable. 

 

1b) Field uses

For the field uses, direct exposure to bees should also be avoided. This can be achieved with the default restriction sentence (Annex V of 91/414/EG) (already on the label):

 

Dit middel is gevaarlijk voor bijen en hommels. Om de bijen en andere bestuivende insecten te beschermen mag u dit product niet gebruiken op in bloei staande gewassen of op niet-bloeiende gewassen wanneer deze actief bezocht worden door bijen en hommels. Gebruik dit product niet wanneer bloeiende onkruiden aanwezig zijn. Verwijder onkruid voordat het bloeit.

 

With this sentence on the Statutory Instructions for Use, the risk is acceptable. 

 

 

Conclusion In-field risk

 In conclusion, to avoid the risk from direct exposure to bees and to highlight the possible risks to introduced pollinators in greenhouses, the following sentences must be included in the Statutory Instructions for Use:

 

Dit middel is gevaarlijk voor bijen en hommels. Om de bijen en andere bestuivende insecten te beschermen mag u dit product niet gebruiken op in bloei staande gewassen of op niet-bloeiende gewassen wanneer deze actief bezocht worden door bijen en hommels. Gebruik dit product niet wanneer bloeiende onkruiden aanwezig zijn. Verwijder onkruid voordat het bloeit. Gebruik is wel toegestaan op bloeiende planten in de kas mits er geen bijen of hommels in de kas actief naar voedsel zoeken. Voorkom dat bijen en andere bestuivende insecten de kas binnenkomen door bijvoorbeeld alle openingen met insectengaas af te sluiten.

 

Let op: dit middel kan schadelijk zijn voor bestuivers in kasteelten. Raadpleeg uw leverancier van bestuivers over het gebruik van dit middel in combinatie met het gebruik van bestuivers en over de in acht te nemen wachttijden.

 

2) Off-field risk

Considering the toxicity of the a.s., also a first-tier off-field risk assessment is performed. The drift rate used is the same as for the evaluation of non-target arthropods. This is 10% for field uses, 37.5% for orchards (before May 1st) and maximally 6.3% for high tree nursery crops. Glasshouse uses and soil treatments do not cause drift exposure to off-field.  See Table E.4.

 

Table E.4 Risk for bees of imidacloprid off-field

Use

Application rate a.s.

Drift %

Exposure

LD50

 

HQ

Trigger value

 

[g/ha]

 

[g/ha]

[µg/bee]

 [Exposure/LD50]

 

Apple and pear

105

37.5%

40

0.0037

10641

50

Flower bulbs, bulb flowers

70

10%

7

0.0037

1892

50

Floriculture crops, tree nursery and perennials

84

10%

8.4

0.0037

2270

50

Tree nursery, high trees

84

6.3%

5.6

0.0037

1521

50

             

Table E.4 shows that there is a potential off-field risk from the field uses in the first tier. This risk was also highlighted in the EFSA conclusion: “Overall it is concluded that the spray applications of imidacloprid pose a high risk to bees. Risk mitigation is required for the use in orchards. The risk to bees is considered to be low if the product is not applied during flowering and if flowering weeds are removed/mown before the product is applied. However it should be noted that bees potentially foraging in the off-crop area would still be exposed via spray drift and hence not be protected by the suggested risk mitigation measure”.

 

To refine the off-field risk for the field uses, higher tier studies will be considered to see if there is a dose rate at which no adverse effects are expected. Note that the standard restriction sentences for the in-field as prescribed above do not protect bees in the off-field area.

 

A cage study with flowering Phacelia tanacetifolia (Bakker, 2001, cage study p in LoE) is available. It was demonstrated that when Imidacloprid SL 200 is applied during bee flight, rates of 0.6 and 1.2 g a.s./ha had no effects on mortality and foraging activity. At a rate of 2.0 g a.s./ha, 4.0 g a.s./ha and 9.0 g a.s./ha foraging activity was reduced on the day of application, but no effects on mortality were observed. At the highest test rate (14.0 g a.i./ha) statistically significant reduction in foraging was found during the first two days, but no effects on mortality were observed. The reduction in foraging activity during a short period as observed in the test is not seen as an adverse effect, due to the short duration and the fact that it will reduce the exposure to imidacloprid (it is assumed that there are sufficient alternative foraging areas during the period of reduced foraging activity on the off-field area after an application with imidacloprid). Higher doses cause enhanced mortality: cage study q in the LoE shows that at 21-35 g a.s./ha, there were effects on mortality (twice as high as in the control). Hence, 14 g a.s./ha is considered as an acceptable off-field dose rate.

 

Table E.5 presents the drift reduction measures which are available to reach a maximum off-field dose of 14 g a.s./ha (based on reference 3 of Chapter 7 of the Evaluation Manual. Version 1.0, January 2010).

 

Table E.5 Required drift measures to reach acceptable risk for bees of imidacloprid off-field

Use

Appl. rate

Maximum acceptable concen-tration

Required drift rate

Available drift reducing measure

 

[g/ha]

[g/ha]

%

 

Apple and pear, before May 1st

105

14

13.3%

Tunnel;

Cross-flow + venturi nozzle + one-sided spraying outside row;

Wanner cross-flow + reflection shield;

Wanner cross-flow + reflection shield + venturi nozzle.

Apple and pear, from May 1st

105

14

13.3%

Cross-flow + reflection shield;

Tunnel;

Cross-flow + one-sided spraying outside row;

Cross-flow + crop detection sensor;

Cross-flow + venturi nozzle + one-sided spraying outside row;

Wanner cross-flow + reflection shield;

Wanner cross-flow + reflection shield + venturi nozzle.

High tree nursery

84

14

16.7%

Not necessary, since drift rate at normal spraying is 6.3%.

Other crops

70-84

14

20-16.7%

Not necessary, since drift rate at normal spraying is 10%.

 

Table E.5 shows that drift reduction measures to protect bees are only necessary for the uses in apple and pear.

 

In an earlier risk assessment of Admire and Admire O-Teq, mitigation measures for apple and pear were also prescribed to protect aquatic organisms. These are prescribed only for fields bordering water bodies. For reasons of clarity, all restriction sentences for both aquatic organisms and bees are given here.

The following must be stated in the statutory instructions for use:

 

Om in het water levende organismen en bijen te beschermen is toepassing in de teelt van appel en peer op percelen die grenzen aan oppervlaktewater uitsluitend toegestaan indien gebruik wordt gemaakt van één van de onderstaande driftreducerende maatregelen:

 

Vóór 1 mei (kaal)

-                     Venturidop + éénzijdige bespuiting laatste bomenrij; ventilatorstand uit.

-                     Wannerspuit met reflectiescherm + venturidop.

Vanaf 1 mei (volblad)

-              Tunnelspuit.

-              Combinatie windhaag op de rand van het rijpad en éénzijdige bespuiting van de laatste bomenrij.

-              Venturidop + éénzijdige bespuiting laatste bomenrij; ventilatorstand aan.

-              Wannerspuit met reflectiescherm + venturidop.

 

Om bijen te beschermen is toepassing in de teelt van appel en peer op percelen die niet grenzen aan oppervlaktewater uitsluitend toegestaan indien gebruik wordt gemaakt van één van de onderstaande driftreducerende maatregelen:

 

Vóór 1 mei (kaal)

-                     Tunnelspuit.

-                     Dwarsstroomspuit + venturidop + éénzijdige bespuiting laatste bomenrij.

-                     Wannerspuit met reflectiescherm.

Vanaf 1 mei (volblad)

-              Tunnelspuit.

-              Dwarsstroomspuit + éénzijdige bespuiting laatste bomenrij.

-              Dwarsstroomspuit + reflectiescherm.

-              Dwarsstroomspuit + sensorbesturing.

-              Wannerspuit met reflectiescherm.

 

With these restrictions, risk to bees is acceptable from exposure in the off-field area for all uses of Admire and Admire O-Teq.

 

 

Indirect exposure via systemic working mechanism

Due to its systemic nature, the a.s. can be taken up by plants. If this plant carries flowers, bees may be exposed to imidacloprid or its metabolites via nectar and/or pollen. This route may be relevant for the crop itself, weeds and succeeding crops. Guttation droplets may contain the active substance and/or metabolite. Also, the risk via honeydew from aphids must be assessed.

 

The EPPO scheme (EPPO 2010) indicates that when risks from systemic substances can be expected based on acute toxicity of the substance, toxicity after longer-term exposure should be considered. Data on this are available and will be discussed below.

 

1) Nectar and pollen of the crop

 

1a) Foliar spray uses

Imidacloprid is a systemic substance. It has many applications as seed treatment, where the substance and its metabolites are taken up by the plant and distributed to plant parts. If the substance ends up in nectar and pollen, this may lead to a risk from flowering crops. As stated in the EFSA conclusion, imidacloprid is preferentially translocated to leaves and shoots and to a much lower extent to the reproductive organs.  Data from the residue section indicate that translocation after spraying is small in terms of percentages of sprayed dose, but small quantities may still cause effects on honeybees. Residues in pollen and nectar have not been measured after spray application (in contrast to after seed treatments).

 

The applicant now presented a statement to address the risks to bees of translocation of imidacloprid and metabolites to flowering organs after spraying. The statement is presented in full below in italics:

 

All outdoor foliar uses of imidacloprid in The Netherlands in flowering plants exclude the flowering period. As such, honey bees are not exposed to residues of imidacloprid in blossoms of (potentially) bee attractive target plants. This conclusion is also valid for the post-flowering uses. With regard to pre-flowering applications, the questions was asked whether there is a potential risk for foraging honey bees later on in the season when the (potentially) bee attractive flowering plant was sprayed before flowering.  Bayer CropScience specifies the latest pre-flower­ing growth stage to be sprayed in floriculture for imidacloprid containing products – e.g. in recent­ly submitted dossiers for Imidacloprid SC 350 – to be BBCH 49 (i.e. end of vegetative pro­pa­ga­tion, before inflorescence emergence [BBCH 50-59] and before beginning of flowering [BBCH 60]).

 

Bayer CropScience has investigated the potential impacts of pre-flowering applications in a highly bee attractive crop. i.e. in flowering apple orchards. In total, five independent studies have been conducted:

 

·        One study in Germany,  1 ´ 105 g a.s./ha, application 24 days before exposure of honey bee colonies (Doc.-No.: M-084030-01-1 [Ctgb: this is Schur 2001, field study m from the LoE]).

·        Four studies in Italy, 1 ´ 120  - 1 ´ 160 g a.s./ha, 15 - 20 days before exposure of honey bee colonies (Doc.-No.: M-355844-01-1 [Ctgb: not previously submitted; see below] and M-064758-02-1 [Ctgb: this is Cantoni et al 1998, field study n from LoE]), at which in study with the highest application rate (160 g a.s./ha) there was the shortest interval to honey bee exposure (15 days, Verona, Doc.-No.: M-355844-01-1)

 

In none of the studies any impact on foraging honey bees as well as on colony development has been recorded.

Moreover, the critical review of various translocation experiments after foliar application of imidacloprid (Doc.-No.: M-308631-01-1 [Ctgb: statement, not previously submitted]) revealed that when imidacloprid is applied on leaf surfaces there is a good translocation to shoots and leaves (xylem mobility) but a poor translocation to sinks, like e.g. storage organs, roots, fruits (negligible phloem mobility). The studies investigated in Doc.-No.: M-308631-01-1 revealed a consistent distribution pattern with predominant acropetal [towards the tips of leaves] and only marginal basipetal [towards the base of leaves] transportation. The authors concluded that it is highly unlikely that a foliar application of imidacloprid will lead to any significant residues in nectar and pollen of plants treated in the pre-flowering stage. This conclusion is supported by the 5 studies conducted in highly bee attractive apple orchards. Moreover, it needs to be considered that the half live of total imidacloprid residues on plant surfaces is very low (< 1 up to max. 2.6 days; see DAR of imidacloprid).

 

As concluded above, spraying on flowering crops is not allowed.

 

The following pictures illustrate the predominant acropetal and the only marginal basipetal distribution of 14C-Imidacloprid by autoradiography; this predominant acropetal transport is also the reason of the empirical observations in commercial practice that new shoots are not pro­tec­ted from aphid infestations after imidacloprid spray applications (aphids are much more sus­ceptible to imidacloprid than honey bees, LD50 = 0.54 pg/aphid; see Doc.-No.: M-110655-01-1 [Ctgb: see point 4 below]).

 

 

 

 

Figure 2.2.1: Illustration of the acropetal transport of imidacloprid after foliar application

 

 

 

 

 

 

Considering (i) the translocation behaviour of imidacloprid after foliar application, (ii) the short half-live of total imidacloprid residues of plant surfaces and (iii) no observable adverse effects on honey bees and honey bee colonies from a pre-flowering foliar application of up to 160 g a.s./ha, the weight of evidence suggests that pre-flowering applications of up to and including 70 g a.s./ha at the latest at BBCH 49 -  still several days before onset of flowering -  will not pose an unacceptable risk to honey bees. This conclusion is supported by the findings of Mayer and Lunden (1997; Doc.-No.: 110179-01-1 [Ctgb: field study l in LoE]) who found no impact on honey bee mortality from an imidacloprid spray application of 112 g a.s./ha in an apple orchard with 10% open bloom and with on average 6 flowering dandelions per m2 understorey.

 

Regarding potential impacts of imidacloprid residues on hibernation, Faucon et al. (2005; Doc.-No.: 387723-01-1 [Ctgb: public literature]) fed honey bee colonies during summer repeatedly with sugar syrup, fortified with 0.5 and 5 µg/L imidacloprid. The authors have not observed elevated acute mortality, or sub-lethal or delayed effects, or effects on brood, colony development or finally overwintering mortality. A systematic investigation of Aubert et al. (2008; Doc.-No.: 400335-01-1 [Ctgb: investigation performed for AFFSA, not peer-reviewed]), who investi­gated the effect of microbial and parasitic agents and pesticide residues on the evolution of domestic bee colonies under natural conditions revealed that the only parameters for which a statistically significant relationship to the mortality of the colonies could be found were the level of attention paid by the apiarist to preventive measures and the early detection and identification of Varroa disease. This conclusion is in line with the recent publication of the German Bee Monitoring (Genersch et al., 2010; Doc.-No.: M-408279-01-1 1 [Ctgb: public literature]) - which has been systemically scrutinizing impacts on up to 1200 honey bee colonies in Germany for many years - where it was concluded that no correlation between plant protection products and overwintering losses have been found and that the principal factor of overwintering losses is an insufficient or improper Varroa control.

 

Considering all the available information and applying the weight-of-evidence principle, it can be concluded with reasonable certainty that honey bee colonies and bee keeping practices will not be impaired from pre-flowering foliar applications in apple orchards when sprayed at the latest at the mouse ear stage or from pre-flowering foliar applications in flowering ornamentals (for flowering ornamentals, Bayer CropScience fixed the timing of application to BBCH 10 – 49 [end of vegetative propagation] and from BBCH 69 [end of flowering] onwards). However, for flowerbulbs and bulbflowers, spraying before the first flower buds are visible, is not a realistic option. As such, we propose to restrict the use in flowerbulbs and bulbflowers to post-flowering.

 

Response Ctgb to statement of the applicant:

The argumentation on the translocation behaviour of imidacloprid after spraying was accepted based on Ctgb residue expertise. Also, the short-half life of imidacloprid on leaves will reduce the possible exposure. Therefore it is likely that the residues in flowering organs from uptake after foliar spray will be very low as long as application on flowers is avoided. The risk will be considered further for the different uses.

 

Orchards

For orchards, studies are available. In the EU dossier, effects on bees after spraying on crops in the pre-flowering stage were investigated in one cage (study o) and two field (studies m & n) trials. These trials, in apple orchards, showed that if spraying is done at the mouse-ear stage (BBCH 10) and bees are present in the following flowering period to forage on the open flowers, no adverse effects on bees occur. This was tested for an application rate of 105 g a.s./ha and bees were monitored for up to four weeks.  The applicant recently  also submitted a paper by Cantoni et al. published in the Bayer Pflanzenschutz-Nachrichten (54/2001). This paper describes the Italian field trial presented in the DAR (field study n from LoE) but also three similar field trials, performed in Italy in 1995. Tested rate was 120, 130 or 160 g a.s./ha, applied at the mouse-ear stage. Bees were introduced 19, 20 or 15 days after application, respectively. No adverse effects on foraging bees or colony development occurred. The observation period was 16 days. This paper can only be considered as additional information since the raw data are not available. Admire and Admire O-Teq can be applied twice per season, but there will be only one application before flowering. Therefore the tests are relevant for the proposed use in orchards.

Based on the cage and field trials, no adverse short-term effects on adult bees are expected from the proposed field applications of Admire and Admire O-Teq in apple and pear orchards by indirect exposure via nectar and pollen of the crop, provided that application is only allowed before flowering up to and including the mouse ear stage, and after flowering. This is already included in the Statutory Instructions for Use.

 

Considering effects of longer-term exposure, laboratory studies are available for imidacloprid which provide NOEC values for chronic mortality and behavioural effects. The relevant NOEC was determined during EU peer review to be 20 ppb. However, residue data in nectar and pollen relevant for the proposed spray uses of Admire O-Teq and Admire are lacking, so these NOEC values cannot be compared directly to residue data for the spray uses. Therefore, effects seen in the field studies will be considered.

In the spray field studies, colony effects were monitored for a period of at most a couple of weeks. However, overwintering was studied in the Faucon study (field study j in LoE). In this study, bee colonies were fed with treated sirop (0.5 or 5 ppb) three times per week for one month during summer. This study shows that long-term effects of imidacloprid at concentrations of up to 5 ppb are not expected.  The other two publications mentioned by the applicant (Aubert et al. and Genersch et al.) confirm this finding. Public literature will be discussed at the end of this evaluation report.

 

In conclusion, for apple and pear effects on honeybees are expected to be acceptable based on i) the low translocation to flowering organs after spray application, ii) the absence of adverse effects after foraging on orchards treated according to GAP, tested for several weeks and iii) the absence of adverse effects in the long-term, including overwintering succes, after realistic worst-case exposure. Application should be restricted to before flowering (up to the mouse-ear stage) and after flowering, as already indicated on the label (only relevant use shown):

 

Toegestaan is uitsluitend het gebruik als insectenbestrijdingsmiddel:

 

in de teelt van appels en peren door middel van een gewasbehandeling met een maximum aantal behandelingen van totaal twee keer per seizoen, met dien verstande dat toepassing alleen is toegestaan vóór de bloei tot en met het muizenoorstadium alsmede na de bloei van appel en peer;

 

Flowering ornamentals

The applicant proposes to restrict the use in flowering ornamentals to before flowering (up to BBCH 49) and after flowering (from BBCH 69).

It has not been studied whether the distribution of residues to flowers after spraying for the field uses in flowering ornamentals is comparable to that in apple. The time between application and flowering may be shorter for these uses than has been tested in orchards (the time between the mouse-ear stage and full flowering is about 3-4 weeks). The applicant refers to the study of Mayer and Lunden and most specifically to the presence of flowering dandelions during spraying to conclude that the risk from flowering ornamentals will be low.  However, this study only tested the adverse effects for a short time after spraying: on foraging activity only on the day of spraying, for mortality only until two days after spraying. Effects on the colony were checked only five days after spraying. Furthermore, this study should be considered as additional information only since the raw data are not reported.

However, based on the studies in orchards and the translocation behaviour in the plant of the a.s. after spraying (see above), the substance will not occur in flowers when the flower buds have not been sprayed. Therefore, spraying in flowering ornamentals is only allowed before flower buds are visible and after flowering. The Statutory Instructions for Use should state (only relevant uses included):

Toegestaan is uitsluitend het gebruik als insectenbestrijdingsmiddel:

 

In de onbedekte teelt van bloemisterijgewassen door middel van een gewasbehandeling, met dien verstande dat toepassing alleen is toegestaan vóór de bloemknoppen zichtbaar zijn alsmede na de bloei;

 

in de onbedekte teelt van en ten behoeve van de teelt van bloembol-, knol-, knolbloem- en bolbloemgewassen door middel van een gewasbehandeling, met dien verstande dat de toepassing uitsluitend plaatsvindt vóór de bloemknoppen zichtbaar zijn alsmede na de bloei of na het koppen

 

in de onbedekte teelt van boomkwekerijgewassen en vaste planten door middel van een gewasbehandeling, met dien verstande dat in gewassen die in bloei kunnen komen toepassing alleen is toegestaan vóór de bloemknoppen zichtbaar zijn alsmede na de bloei.

 

 

1b) Dipping applications

Dipping applications in bulbs are currently allowed both in field and protected use and both for bulb and flower production (in Dutch, bloembol- en bloemknolgewassen are for bulb production, bolbloem- en knolbloemgewassen are for flower production). 

 

There are no measurements of residues in flowering organs of ornamental bulbs after dipping application. The uptake mechanism in the plant after bulb treatment is expected to be more comparable to seed treatment than to foliar spray. Seed treatment dose rates of imidacloprid are in the range of 0.9-1.2 mg/seed. As reported in the EFSA conclusion, at this dose rate, residues in nectar and pollen of the crops are expected to be at an acceptable level for bees.

The dose per bulb is not reported, as bulbs are usually planted per kg, not per number. The dose per bulb will depend on the planting density, which varies with crop and cultivar. The applicant has indicated that for tulips, the density is ca. 150 / m2, which, based on a dose rate of 200-210 g/ha, would lead to a dose per bulb of 0.13-0.14 mg/bulb. This indicates that the amount of a.s. per tulip bulb would be lower than per seed. Data are currently lacking to determine the relevant range of planting density for all different bulb crops.

It is not known if the uptake and dilution mechanism of the a.s. is indeed comparable between bulb and seed treatment. For bulbs, the growing period may be shorter, which would mean that during bulb development the amount of a.s. lost by dissipation will be lower than during seed development. Also, dilution by growth is expected to be lower for bulbs than for seed treatment.

Based on the above, it is not possible to conclude that the concentration in nectar and pollen of bulbs which have been dip treated will be at an acceptable level for bees. Thus, the risk is only acceptable when exposure can be excluded.

 

Exposure will depend on attractivity ánd on whether the bulbs will flower on the field.

 

Expertise on flower attractivity was sought from the bee specialists at Bees@WUR to investigate the possibility of exposure for the different ornamental bulbs.

For none of the ornamental bulbs, it can be said with certainty that bees or bumblebees will not forage on the flowers. Even where flowers are not very attractive, bees may fly on them in situations where other forage is scarce. Therefore, there is potential exposure from all bulb crops. Thus, a risk in the field cannot be excluded when there are flowers; therefore, flowering should be avoided.

 

The label currently states that flowering has to be avoided for bulbs in the field which have had a dipping treatment. This restriction is maintained. With the restriction, the risk to bees via this route is acceptable.

 

 

The Statutory Instructions for Use need not be revised as they already state (only bulb dipping uses included):

Toegestaan is uitsluitend het gebruik als insectenbestrijdingsmiddel:

 

in de bedekte teelt van en ten behoeve van de teelt van bloembol-, -knol, knolbloem- en bolbloemgewassen door middel van een dompelbehandeling, waarbij niet meer dompelvloeistof wordt gebruikt dan in de gebruiksaanwijzing is aangegeven,

 

in de onbedekte teelt van en ten behoeve van de teelt van bloembol-, -knol, knolbloem en bolbloemgewassen door middel van een dompelbehandeling, met dien verstande dat bloei moet worden voorkomen en niet meer dompelvloeistof wordt gebruikt dan in de gebruiksaanwijzing is aangegeven;

 

 

2) Nectar and pollen of weeds

It is stated on the label that application is not allowed when flowering weeds are present. However, weeds may flower after application and then still contain the a.s. or metabolites due to their systemic and persistent properties.

In fruit orchards and semi-permanent tree nursery, flowering weeds can be expected in some amount. In the other crops, the presence of a large amount of flowering weeds is not expected, since this is adverse to profitable agriculture. Therefore, the risk via exposure from flowering weeds in the other crops is expected to be low, but it must be further considered for orchards.

 

The risk of flowering weeds is not considered to be covered by the spray (semi-)field trials in apple orchards, because in these trials application was relatively long before flowering of the apple trees (at BBCH 10). Weeds may start flowering sooner than apple trees and may then contain higher residues than the apple flowers, potentially causing more effect. This has not been investigated in most studies (no specific attention was given to the presence or absence of flowering weeds). Only in field study l in the LoE flowering dandelions were included in the study protocol. The applicant considers that “the findings of [this study l] who applied imidacloprid at 112 g a.s./ha in an apple orchard with 10% open bloom and additionally with on average 6 flowering dandelions per m2 understorey with no impact on honey bee mortality suggest that the relevance of emerging flowering and bee attractive weeds in the orchard understorey soon after an imidacloprid application in terms of associated risks for honey bees is acceptable. Nonetheless, in light of the recent discussion with Ctgb on this subject, Bayer CropScience suggests to state on the label that the understorey has to be cut in any case before applying imidacloprid to orchards and tree nursery crops and that potential weeds in the understorey have to be managed to prevent them from flowering for two weeks after application (e.g. by frequent mowing which is common practice for most growers anyway).”

 

Ctgb agrees that the risk from flowering weeds will be sufficiently reduced when the understorey is mowed for at least two weeks after application. The following sentence will be added to the bee restriction sentence:

 

Na een spuittoepassing percelen nog minimaal twee weken vrijhouden van bloeiende onkruiden.

 

 

3) Nectar and pollen in succeeding crops

Imidacloprid is persistent in soil (laboratory DT50,soil values from EFSA conclusion, normalised to FOCUS reference conditions: 99-129 days) and therefore residues of imidacloprid may be expected in nectar and pollen of succeeding crops. As the EFSA conclusion states, since no major soil metabolites were detected in the soil degradation studies, bees would therefore only be exposed to residues of the active substance itself in succeeding crops.

In the DAR, the risk of succeeding crops was discussed. “Specifically designed succeeding crop studies were conducted on different locations with significantly different soil characteristics, imidacloprid soil residue levels and climate. Residue levels of imidacloprid were found in soils of all treated fields. In contrast, no residues of imidacloprid and the imidacloprid metabolites monohydroxy- and olefine- were detected in nectar, pollen or honey from rape, clover or maize planted as succeeding crops. In sunflower crops, Lagarde (2001) reported detectable residues in 1 of 4 nectar (1.6 ppb) and in 1 of 14 pollen (1.5 – 2 ppb) samples but it is unclear from the study report whether the positive results were obtained from seed-treated or untreated crop plants. From a comparative measurement in sunflower seedlings, Lagarde (2001) recorded a 40-fold higher imidacloprid adsorption rate in seed-treated sunflower crops compared to sunflower plants grown as succeeding crops.”

The conclusion drawn in the DAR is: “ Succeeding crop plants do not exhibit residue levels of imidacloprid (including the monohydroxy- and olefine-metabolites) higher than 2 ppb in nectar or pollen.” This conclusion is based on untreated crops grown in soils with imidacloprid residues of 0.0127-0.025 mg/kg. See for more information Table B.9.4-5 in the DAR. [It is unknown whether the soil levels in the DAR are measured or calculated; and if calculated, over 5 or 20 cm. It will be assumed that they were calculated over a 20 cm layer; this is worst case with respect to a calculation over 5 cm].   

 

In addition, two new studies have recently been submitted to Ctgb (Nikolakis et al.¸2011 a+b). These studies, performed in Germany, confirm the above findings. On soils in which a plateau concentration of 126 g a.s./ha (analysed: 45.7 and 34.0 ug a.s./kg soil) was simulated, winter wheat seed treated at 126 g a.s./ha was sown in autumn 2007 and harvested in summer 2008. Then in late summer 2008 untreated winter OSR was sown. Directly before sowing of OSR, soil concentration had decreased to 18.8 and 15.2  ug a.s./kg soil.  In April 2009, honeybees were confined over the flowering OSR crop in tunnels. Pollen and nectar were collected from foraging honeybees. Residues of imidacloprid in OSR-nectar collected on the imidacloprid treatment test plot were always below the LOD of 0.3 ppb. The imidacloprid concentration in pollen samples from the imidacloprid treatment test plot was determined to be at most 2 ppb. The imidacloprid-monohydroxy and imidacloprid-olefine concentration of all pollen and nectar samples from the treatment test plot was always below the LOD of 0.3 ppb.

 

Based on all the above studies, it can be concluded that imidacloprid residues in nectar and pollen from succeeding crops are not expected to be higher than 2 ppb when these succeeding crops are untreated and sown in soils containing 13-25 µg a.s./kg soil

 

According to the DAR, 2 ppb is expected to be a safe concentration to bees, based on the NOEC of 20 ppb. 

Now, the risk to adult bees foraging on nectar or pollen can also be estimated by using the daily intake data from Rortais et al. (2005), as indicated in EPPO 2010. This article presents the the daily food intake for different bee categories.

According to Rortais et al., nurse bees are expected to consume the highest amount of pollen of all categories of bees: 65 mg/bee in 10 days, so 6.5 mg/d.  The estimated highest residue value in pollen of 2 µg/kg leads to an possible intake of imidacloprid by nurse bees of (6.5 mg*2 pg/mg=) 0.013 ng/bee/day. This value can be compared to the acute LD50 for adult bees of 3.7 ng/bee/d, which leads to a TER of 285, indicating a low risk (the trigger is 10, according to EPPO 2010, so there is still a large margin of safety).

The worst-case exposure is expected for nectar foragers, which consume the highest amount of nectar of all categories of bees: 224-899 mg sugar/bee in 7 days, which translates into a level of 32 – 128 mg sugar/bee/day. How much nectar or honey intake is needed to reach this sugar intake, depends on the crop and environmental conditions. Rortais et al. give the example of sunflower: when a honeybee requires 1 mg of sugar, it will have to consume either 2.5 mg of fresh sunflower nectar or 1.25 mg of sunflower honey. Thus, a bee would need 80-321 mg sunflower nectar/day or 40-160 mg sunflower honey/day.

Taking therefore the residue level in nectar of a succeeding crop as 2 µg/kg, as explained above, the exposure can be calculated as 2 ng/g * (0.080 to 0.321 g/bee/day) = 0.16 to 0.642 ng/bee/day (taking the example of sunflower nectar). This value compared to the acute LD50 for adult bees of 3.7 ng/bee/day leads to a TER of 23 to 5.8. This shows that based on worst-case assumptions (highest nectar intake), the TER is (slightly) below 10, which is the trigger suggested by EPPO 2010 to cover chronic exposure. Based on the lowest value for nectar intake, no risk is indicated.

These calculations assume that all food that is taken in, is contaminated with imidacloprid, which is worst case. There is some uncertainty related to the fact that the calculations are based on sunflower nectar, while other flower species may have a lower sugar content and thus might lead to higher exposure. However, the example used is that given in the EPPO scheme 2010 as an adequate estimate.

 

This calculation of daily intake confirms the conclusion in the DAR that 2 ppb can be seen as a safe concentration to honeybees.

 

As said above, imidacloprid residues in nectar and pollen from succeeding crops are not expected to be higher than 2 ppb when these succeeding crops are sown in soils containing 13-25 µg a.s./kg soil.

 

Therefore, it has been calculated for the proposed field uses after how many days the concentration in soil (calculated over 20 cm; this is considered to be the relevant soil layer) reaches 25 ug/kg soil (0.025 mg/kg). Calculations are based on the maximum non-normalised field DT50 of 196 d (according to HTB 1.0/Evaluation Manual).

See Table E.6.

 

Table E.6 Number of days to reach residue <0.025 mg/kg soil (20 cm)

Use

Rate

[kg a.s./ha]

Frequency/ interval (days)

Fraction on soil

PECsoil

5 cm

[mg a.s./kg]

Residue in soil < 0.025 mg/kg after … d (20 cm soil layer)

Required waiting period for succeeding crops which are foraged on by bees

Apples and pears

0.105

2/7

0.2

0.055

<0 d

0 d

Floriculture (field), before flowering

0.084

2/7

0.8

0.177

162 d

6 months

Floriculture (field), after flowering

0.084

2/7

0.51

0.111

28 d

1 month

Flowerbulbs and bulbflowers, (field), before flowering

0.07

12/-

0.8

0.093

0 d

0 d

Flowerbulbs and bulbflowers, (field), after flowering

0.07

3/7

0.43

0.109

24 d

1 month

Flowerbulbs and bulbflowers (dipping)

0.210

1/-

1

0.280

290 d

10 months

Tree nursery and perennial (field), before flowering

0.084

2/7

0.8

0.177

162 d

6 months

Tree nursery and perennial (field), after flowering

0.084

2/7

0.54

0.111

28 d

1 month

Chicory (spray treatment in seed drill)

0.0875

1/-

1

0.117

45 d

2 months

1 Based on onion scenario (considered to be worst case; no scenario for floriculture is available).

2 Before flowering, only one application will take place (this will be indicated on the label and is the realistic situation in practice)

3 No scenario for bulbs is available, but an interception of 60% is considered realistic worst case based on the high density of flowerbulbs, comparison with vegetable crops and beets, and literature data on interception of flower bulbs.

4 Based on conservative estimate (no scenario for tree nursery is available)

 

 

 The above Table shows that for apple and pear and for the one-fold foliar spray in flower bulbs before flowering, the initial concentration is already below the acceptable level, so a waiting period is not necessary. For the other crops, the time period is indicated after which it can be said with certainty that the residue level in nectar and pollen of an untreated flowering crop will be at or below a level that is harmless for bees.

 

The applicant was requested to address the risk of bee-attractive succeeding crops (imidacloprid-treated and - untreated) of the spray field uses in floriculture, flowerbulbs and bulb flowers, tree nursery and perennials and chicory of Admire O-Teq and Admire. They provided the following statement:

 

Carry-over of soil residues and subsequent uptake by succeeding, bee-attractive flowering crops has been investigated in a range of studies. The maximum residues in bee relevant matrices like nectar and pollen that has been found was 2 µg imidacloprid/kg, originating from a soil-borne imidacloprid residue levels ranging from 13 - 25 µg imidacloprid/kg soil. Ctgb has now calculated on the basis of the max. non-normalised field DT50 of imidacloprid and the initial PECSOIL after soil or foliar use of imidacloprid the time period until when the soil borne residue level has declined in the upper 20 cm to 25 µg imidacloprid/kg soil. The calculated time period for all imidacloprid used in The Netherlands is < 1 year (max. ≈10 months), i.e. whatever the field use of imidacloprid in The Netherlands, a bee attractive flowering crop can be sown on a field which received its last imidacloprid application about 1 year before. Studies on the time dependent sorption of imidacloprid in mineral soils with an organic carbon content of 0.9 and 1.8% showed a constant increase of the KOC-value of imidacloprid over time with increase factors of 3.2 and 3.8 after 100 days (Doc. No.: M-023945-01-) which translates into a steadily decreasing bioavailability of soil borne imidacloprid. 

However, there are to date no studies with higher than 25 µg/kg soil residues available to experimentally prove that bee attractive crops can be planted with a shorter time interval than 10 months after the last imidacloprid application. Therefore, Bayer CropScience proposes to adjust the label with waiting periods before planting a bee attractive flowering crop that are in line with the suggestions made by Ctgb in their draft evaluation”.

 

In accordance with Table E.6, the required waiting periods should be prescribed on the label. See the attached revised WG/GA. With these restrictions, the risk from succeeding crops is acceptable.

The risks to bees in a crop failure scenario were not considered relevant, because crop failure almost never occurs in the crops in which Admire and Admire O-Teq are used.

 

 

 

 

4) Honeydew

Risk from exposure to honeydew excreted by aphids and contaminated with residues (from systemic uptake after spraying) is not of concern according to the DAR because the oral LD50 of imidacloprid for aphids is much lower (0.000 000 5 µg as/aphid) than for bees (0.004 µg as/bee). Therefore it can be assumed that appreciable amounts of honeydew will only be present at residue concentrations that are not relevant for bees.

As was stated in the EFSA conclusion, the derivation of the LD50 value for aphids was unclear during the Praper meeting and the experts suggested a data gap for the applicant to clarify this point. The applicant has now submitted the study in which the LD50 was derived: Elbert et al (1991), Imidacloprid – a new systemic insecticide. This is an overview of efficacy studies with imidacloprid, demonstrating the toxicity to target organisms. Even though the method to derive the LD50 may be questioned and the endpoint is only derived for one sensitive species, on the basis of this study it can be concluded that the LD50 for aphids will be some orders of magnitude lower than that for bees and thus the risk via honeydew will indeed be low. RMS Germany agrees with this. 

 

5) Guttation

The applicant (Bayer) did not include studies considering guttation in their imidacloprid dossier. However, several protected studies are available in which the risk via guttation from clothianidin (another neonicotinoid substance)-seed-treated crops was considered. These studies are owned by Bayer.

The occurrence of guttation was recorded in twelve commercial sugar beet fields and its adjacent crops or habitats, in a typical German sugar beet growing area.  Guttation was observed, but not often. In maize, guttation is a much more common phenomenon, which was shown in four trials in France (Liepold). In these trials, seedlings were inspected for guttation droplets from emergence till the occurrence of guttation had stopped for more than five days (24-53 days), several times per day from early in the morning until guttation had stopped for that day (between 11 and 13 h). Bee hives were present close to these fields. Guttation was observed to take place in the morning on the majority of observation days, and timing during the day partly overlapped with the period of high flight activity of the bees. Bees were never observed to collect guttation fluid, and seldom were they seen in contact with guttating plants.

A similar trial was performed in Austria: maize seedlings sown from treated seed were observed for guttation and for bees drinking from guttation droplets. Residues in guttation droplets were measured. This study demonstrated that honey bees do occasionally use guttation fluid as drinking supply, and guttation does contain considerable amounts of clothianidin, diminishing over time, but guttation is not a favoured water source, and mortality of adult bees measured at the hives was generally low, confirming that potential exposure to and/or optake of contaminated guttation fluid did not lead to noticeable increases of adult bee mortality measured at the hive.

These studies sufficiently demonstrated that exposure to and consumption of guttation fluid by foraging bees is unlikely to happen, or only at a very low rate. The studies are considered to be relevant for also for the proposed uses of Admire O-Teq and Admire.

Furthermore, due to dangers (e.g. presence of predators) bees are not keen on foraging on plants unless there is a considerable reward (pollen, nectar). Therefore, drinking droplets from plants is not likely to occur in the field (personal communication from a professional beekeeper).  

Further, it is also communicated by beekeeper-organisations that beekeepers should provide their bees with sufficient water.

Taking all the available information into account Ctgb expects a low risk to honeybees from guttation.

 

 

 

 

 

 

Public literature:

The above risk assessment, based on protected data from the applicant, indicates that the risks of the proposed uses of imidacloprid in general are acceptable for bees, provided that restrictions are mentioned on the labels. In this section it will be considered whether studies available in the public literature domain confirm or contradict the risk assessment as shown above. A preliminary search on public literature has been carried out recently. The included references are presented in Annex II and the main results are summarised below.

 

Acute and chronic toxicity in laboratory studies

Acute toxicity reported in public literature is equal to or lower than the acute toxicity endpoint used in the risk assessment as shown above. The chronic mortality and sublethal effect studies were already considered in the DAR of imidacloprid. Therefore, these laboratory studies do not give rise to concerns that the risk assessment as shown above is not sufficiently conservative.

 

Residues in nectar and pollen

The residue data in nectar and pollen reported in the public literature survey are in agreement with the levels used in the risk assessment.

 

Sublethal/indirect effects

Wu (2011) measured imidacloprid in brood combs in the USA. The substance was found in 1 of the 13 samples, at a level of 45 ppb. The combs were contaminated with many other substances. Most frequently detected were a number of miticides used by beekeepers against Varroa. Delayed development was observed in bees reared in contaminated combs in a cage set-up. However, it is difficult to correlate this effect specifically to imidacloprid because combs were contaminated with a cocktail of substances and may have contained also more pathogens than control combs. Also, this study does not include the implications for colony survival in the longer term. Therefore, this study does not contradict the above risk assessment.

 

Faucon et al (2005) fed two groups of eight honey bee colonies with two different concentrations of  imidacloprid in saccharose syrup during summer (each colony was given 1 litre of saccharose syrup containing 0.5 µg/L or 5 µg/L of imidacloprid on 13 occasions). Their development and survival were followed in parallel with control hives (unfed or fed with saccharose syrup) until the end of the following winter. The parameters followed were: adult bee activity (number of bees entering the hive and pollen carrying activity), adult bee population level, capped brood area, frequency of parasitic and other diseases, mortality, number of frames with brood after wintering and a global score of colonies after wintering. The only parameters linked to feeding with imidacloprid-supplemented saccharose syrup when compared with feeding with non-supplemented syrup were: a statistically non-significant higher activity index of adult bees, a significantly higher frequency of pollen carrying during the feeding period and a larger number of capped brood cells. When imidacloprid was no longer applied, activity and pollen carrying were re-established at a similar level for all groups. Repeated feeding with syrup supplemented with imidacloprid did not provoke any immediate or any delayed mortality before, during or following the next winter. This confirms the expectation made in the risk assessment that exposure to a residue level of up to 5 ppb does not lead to adverse long-term effects.

 

Nguyen et al. (2009) studied the connection between imidacloprid seed-treated maize and winter bee mortality in Belgian apiaries. Imidacloprid was measured in bee matrices: bees and bee wax: 0 out of 48 positive; honey: mean 0.275 ppb (between LOD and LOQ) in 4 out of 48 samples. The origin (floral resource) of the measured imidacloprid in honey is unclear, since maize does not produce nectar. No correlation of mortality was found with imidacloprid. Winter mortality had a negative correlation with the surface of maize in the surroundings. 

 

In a study of the effects of imidacloprid sunflower seed coating to Bombus terrestris (Tasei et al., 2001) the authors concluded that applying imidacloprid at the registered dose, as a seed coating of sunflowers cultivated in greenhouse or in the field, did not significantly affect the foraging and homing behavior of B. terrestris and its colony development.

 

Morandin & Winston (2003) subjected bumblebee colonies to 7 or 30 ppb imidacloprid in pollen. There were no effects on pollen consumption, bumble bee worker weights, colony size, amount of brood, or the number of queens and males produced. No lethal, sublethal colony, or individual foraging effects were found at residue levels found in the field (7 ppb), suggesting that bumble bee colonies will not be harmed by proper use of these pesticides. Effects on foraging speed were detected at 30 ppb (a higher concentration than found in the field).

 

Girolami et al (2009) measured residue levels in guttation droplets from plants grown from treated seeds and found high concentrations, which had a significant effect on honey bees. However, as indicated by Thompson (2010), these findings should be treated with caution as the data were generated by feeding collected droplets directly to bees, and in many cases sucrose was added to ensure that the honey bees consumed the dose. Furthermore, from studies in the protected dossiers on the relevance of guttation in the field it is concluded that guttation does not lead to risks in practice.

 

It is important to realize that some of the studies used in the risk assessment above have been subjected to a meta-analysis recently published in a paper by Cresswell (2011). The analysis comprised 14 published studies of the effects of imidacloprid on honey bees under laboratory and semi-field conditions that included measurements on 7073 adult individuals and 36 colonies.  The resulting fitted dose-response relationships estimate that trace dietary imidacloprid at field-realistic levels in nectar will have no lethal effects, but will reduce expected performance in honey bees by between 6 and 20%. Statistical power analysis showed that published field trials that have reported no effects on honey bees from neonicotinoids were incapable of detecting these predicted sublethal effects with conventionally accepted levels of certainty.   

This issue pertains to all pesticide bee risk assessments, not only to neonicotinoids, and will be considered by a European working group which has not started yet (EFSA mandate M-2011-0185). The Netherlands will participate in this working group. Ctgb will assess using the European harmonized methodologies until the impact of this paper has been clarified in the European framework.

 

 

Monitoring studies

Several large-scale monitoringstudies were performed in which bee health was studied and pesticide residues in bee hives were measured.

 

In a large study in Germany (Genersch et al., 2010), many pesticides (including miticides) were found in honeybee colonies. Imidacloprid was detected in one of the 215 samples of beebrood. In this study, factors which significantly influenced overwintering succes were 1) high varroa infestiation level; 2) infection with deformed wing virus (DWV) and acute bee paralysis virus (ABPV) in autumn; 3) queen age; 4) weakness of the colonies in autumn. No effects could be observed for Nosema spp. or pesticides. The authors however consider that further investigations and controlled experiments are necessary to clarify the relation between pesticides and honeybee colony health in the long-term.

 

 

In a study on French apiaries in France (Chauzat et al. 2006), pesticide residues were analysed in pollen loads. Search of imidacloprid and 6-chloronicotinic acid was conducted on 81 samples of pollen loads. Residues of imidacloprid were found in 40 samples. The most frequent residues were imidacloprid (49.4% of samples), 6-chloronicotinic acid (44.4%) and fipronil (12.4%). The proportion of samples with either imidacloprid, 6-chloronicotinic acid, or both was 69.1%. Maximum imidacloprid and 6-chloronicotinic acid concentration found in these positive samples was 5.7 and 9.3 µg/kg (mean: 1.2 and 1.2 ppb), respectively.

In another study in France (Chauzat et al, 2009), honeybee colony health was studied in relation to pesticide residues found in colonies. Imidacloprid metabolites were analysed in pollen, honey and honeybee samples. The most frequent residue in pollen loads, honey, and honey bee matrices was imidacloprid or 6-chloronicotinic acid. Mean concentrations of imidacloprid residue, from those positive samples, were 1.2 µg/kg in honey bees, 0.9 µg/kg in pollen, and 0.7 µg/kg in honey. The concentration obtained for imidacloprid and 6-chloronicotinic acid in pollen loads was above the limits of detection (LOD) in 40% (75/185) and 33% (61/185) of the samples, respectively. When both were found together, the concentrations were above the LOD in 16% (30/185) of the samples.

It is not known to which extent imidacloprid was used in the areas in which the bee samples of  the studies of Chauzat et al. were taken. Apart from imidacloprid, many other pesticidal substances were found in the bee matrices.

No signficant relationship was found between the presence of pesticide residues and the abundance of brood and adults, nor between colony mortality and pesticide residues. The authors conclude that more work is needed to determine the role these residues play in affecting colony health.

 

In a study of Belgian apiaries comparable to the above trials, imidacloprid was found in 5 of the 109 samples in amounts <0.084 ppb (Pirard et al 2007).  

 

Higes et al (2010) estimated the prevalence of honey bee colony depopulation symptoms in Spain in a random selected sample (n = 61) and explored the implication of different pathogens, pesticides and the flora visited in the area under study. Imidacloprid was not detected in any sample. Acaricides like fluvalinate, and chlorfenvinphos used to control Varroa mite were the most predominant residues in the stored pollen, probably as a result of their application in homemade formulae. None of the pesticides identified were statistically associated to colony depopulation. This preliminary study of epidemiological factors suggests that Nosema Ceranae, a unicellular parasite, is a key factor in the colony losses detected over recent years in Spain. However, more detailed studies that permit subgroup analyses will be necessary to contrast these findings.

In two other studies in Spain (Garcia-Chao et al 2010, Bernal et al. 2010), imidacloprid was not detected either.

 

 

Schmuck (2001) found imidacloprid residue levels in greenhouse grown sunflower pollen and nectar grown in greenhouses of 3.9 and 1.9 ppb, respectively. He found no detectable residues under field growing conditions, nor in succeeding crops.

 

In a broad survey of pesticide residues, which was conducted on samples from migratory and other beekeepers across 23 USA states, one Canadian province and several agricultural cropping systems during the 2007–08 growing seasons, Mullin et al (2010) found the following residue levels of imidacloprid: wax 2.4-13.6 ppb (detected in 1.0% of 208 samples, mean 8.0 ppb); pollen 6.2-206 ppb (detected in 2.9% of 350 samples, mean 39 ppb). They also found 98 other pesticides and metabolites in mixtures up to 214 ppm in bee pollen alone, which according to them represents a remarkably high level for toxicants in the brood and adult food of this primary pollinator. They conclude that the effects of these materials in combinations and their direct association with CCD (colony collapse disorder) or declining bee health remains to be determined.

 

 

The residues reported in these publications cannot be linked to a certain (type of) use. imidacloprid is an insecticide used in agriculture, horticulture, animal health, house protection/household markets and locust control, thus a number of different sources can contribute to bee exposure.

 

Thus, from the public literature the only conclusion that can be drawn with certainty is that in many countries imidacloprid is found in different bee matrices in the field. More research is needed to determine causal relationships with bee colony health.

 

In these matrices usually a mixture is present of many pesticidal substances. So far, no statistical correlation has been found between the presence of pesticide residues in colonies and honeybee health in the long-term. Other factors than pesticides háve been shown to be linked to overwintering succes, though.

 

Bee colony losses in the Netherlands

 

In the Netherlands, relatively high bee losses have been reported in recent years (increased mortality after winter).

 

A scientific report on bee mortality and bee surveillance in Europe, submitted to EFSA (Hendrikx et al. 2009), reported the results regarding The Netherlands and Belgium as shown in the table below.

 

 

 

The yearly NCB (Dutch monitor on honeybee colony losses) established a mortality rate of 23% during winter 2007/2008 and 26% during winter 2005/2006. Colony loss in 2009-2010 was 23.1 (after adjusting for inappropriate winter feeding (Ambrosius Fructo-Bee)) (Van der Zee, 2010; Van der Zee & Pisa, 2011).

 

These losses have mainly been attributed to beekeeping practice with regard to pests and diseases, especially the Varroa mite, since it has been found that adequate and timely Varroa treatment reduces winter mortality (Van der Zee & Pisa 2011; personal communication bees@wur and professional beekeeper). Also, reduction of forage is likely to play a role. The relationship between pesticides and bee decline has not been studied in the Netherlands so far.

 

Europe

A report submitted to EFSA on bee mortality and bee surveillance in Europe (Hendrikx et al.  2009), concluded on results derived from surveillance systems in 27 European countries and a  thorough literature search of the existing databases, as well as relevant grey literature about causes of colony losses:

• General weakness of most of the surveillance systems in the 24 countries investigated;

• Lack of representative data at country level and comparable data at EU level for colony

losses;

• General lack of standardisation and harmonisation at EU level (systems, case definitions and data collected);

• Consensus of the scientific community about the multifactorial origin of colony losses in Europe and in the United States and insufficient knowledge of causative and risk factors for colony losses.

 

International observations

A recent United Nations report (UNEP 2011) considers the status of honeybees and other pollinators worldwide. In Europe, North-America and Asia, increased bee losses have been reported. However, the symptoms seen are diverse. From Africa, reports of losses have only come from Egypt. In Australia, no increased honey bee losses have been reported (it is noted that the Varroa mite has not yet been introduced to this continent, except in New Zealand).

 

The UNEP report names many possible threats to pollinators:

-          Habitat deterioration, with reduction of food sources (and habitat, for certain wild pollinators).

-          Increased pathologies.

-          Invasive species (the parasitic mite Varroa destructor is named as the most serious threat to apiculture globally).

-          Pesticide use (chronic herbicide use and spray drift from broad spectrum insecticides; possible effects of chronic sublethal exposure to systemic insecticides, however this still needs to be proven in the field).

-          Beekeeping activities.

-          Climate change.

The conclusion of the UNEP report shows the complexity of the bee decline issue and is presented here in full:

Currently available global data and knowledge on the decline of pollinators are not sufficiently conclusive to demonstrate that there is a worldwide pollinator and related crop production crisis. Although honey bee hives have globally increased close to 45% during the last 50 years, declines have been reported in several locations, largely in Europe and Northern America. This apparent data discrepancy may be due to interpretations of local declines which may be masked by aggregated regional or global data. During the same 50-year period, agricultural production that is independent from animal pollination has doubled, while agricultural production requiring animal pollination has increased four-fold (reaching 6.1% in 2006). This appears to indicate that global agriculture has become increasingly pollinator dependant over the last 50 years. However, human activities and their environmental impacts may be detrimental to some species but beneficial to others, with sometimes subtle and counter-intuitive causal linkages. Pollination is not just a free service but one that requires investment and stewardship to protect and sustain it. There should be a renewed focus on the study, conservation and even management of native pollinating species to complement the managed colony tradition. Economic assessments of agricultural productivity should include the costs of sustaining wild and managed pollinator populations.

 

Many research networks and policy programmes have been created worldwide to study and counter pollinator decline (see the UNEP report for an overview).

 

 

Based on the information as shown above, it cannot be concluded that there is a link between imidacloprid and the relatively high winter mortality in honeybee colonies observed in the Netherlands in recent years. Clearly, bee decline is caused by (an interaction of) a number of factors. There is currently no evidence that imidacloprid or other neonicotinoid products significantly contribute to bee decline based on the referred public literature. It should be noted that other (European and elsewhere) countries have not withdrawn these substances from the market either (with some exceptions where clear acute bee poisoning due to suboptimal sowing circumstances was observed; this has not been the case in the Netherlands).

Finding associations between bee decline and all possible environmental factors is a complex issue that has to be established the coming years in a scientific way. It seems rational that the possible association of imidacloprid (and other neonicotinoids) on high winter mortality in honeybee colonies observed in the Netherlands is part of these investigations. In the ‘Inclusion Directive’ of imidacloprid it is suggested that a monitoring programme may be required to further investigate the role that neonicotinoid substances play in bee decline. Recently, a study has been started by bijen@wur to investigate the long-term effects on honeybee colonies of chronic sublethal exposure to imidacloprid in relation to the vitality of honeybee colonies. Awaiting the results of this study, more extensive monitoring programmes targeted at the effects of imidacloprid on honeybees are currently not required.

 

 


Appendix I. List of Endpoints Ecotoxicology

Final LoE imidacloprid for inclusion in Annex I of 91/414/EEC.

 

 

For the risk assessment the final LoE of the EFSA conclusion is used (Word-version d.d. 02/2008, endpoints are the same as for the published conclusion on 05/2009) and additional data from the applicant (summarised and evaluated by Ctgb, May 2011). Additions to and clarifications of the LoE are shown in italics.

 

 

Effects on honeybees (Annex IIA, point 8.3.1, Annex IIIA, point 10.4)

Acute oral toxicity

LD50 = 0.0037 µg as/bee (active substance)

LD50 = 0.0056 µg as/bee (formulation)

Acute contact toxicity

LD50 = 0.081   µg as/bee (active substance)

LD50 = 0.042   µg as/bee (formulation)

The LoE contains only the lowest endpoints for the a.s. and the formulation. More acute toxicity tests were done with the a.s.. Table B.9.4-1 in the DAR presents the results from these tests (ranges: oral LD50 >21->70.3 ng a.s./bee, oral NOEL 1.5-9.0 ng/bee; contact LD50 42.9-129 ng/bee, contact NOEL <40 ng/bee).

 

In addition, acute toxicity tests with metabolites were done. Of the 7 imidacloprid plant metabolites only the olefine- and the monohydroxymetabolites are considered relevant for evaluating the risk to honeybees from a crop seed treatment with imidacloprid. These metabolites also have high acute toxicity to bees, but significantly lower subacute toxicity than the parent .

 

Also, in the DAR the sensitivity of other hymenopterans (Bombus terrestris, Nomia melanderi, Megachile rotundata and Bombus occidentalis) to imidacloprid compared to honey bees was performed. Based on that reviewed data it can not be concluded that imidacloprid poses a higher risk to wild than to domestic bees.

 

Furthermore, several chronic tests and studies to investigate sublethal effects (bee behaviour) on honeybees were conducted with the a.s. The chronic lethal and sublethal toxicitywas extensively discussed in the DAR and summarised in the EFSA conclusion on imidacloprid, which has been copied in the beginning of the risk assessment for plant protection products above. In the DAR, NOEC values from the available studies for the acute oral toxicity, sublethal effects (learning behaviour), chronic lethal effects and chronic behavioural impacts including bee hive development were set at 46, 50, 24 and 20 ppb. The 20 ppb is derived from semi-field and field studies; the DAR concludes that the laboratory NOLEC would not be lower than 10 ppb.

 

Field or semi-field tests

Because of the high toxicity of the active substance all spray applications have to be classified as hazardous for bees. Because of the distinct systemical mode of action in combination with the high toxicity a large number of practical tests have been performed regarding effects on bees by seed treatment. In total 14 cage tests and 11 field tests have been regarded for the evaluation. By all results the seed treatment with imidacloprid containing products has been proved as not hazardous for bees.

 

A summary from the (semi-) field tests presented in the DAR (with additional information in addendum 4) is added here by Ctgb. Residues were taken from bee-relevant matrices in most of the studies (these are discussed in the risk assessment). The validation of the analytical methods for residue analysis is presented in addendum 2 of the DAR. Addendum 4 contains a list of studies which were not considered relevant for the risk assessment of bees by the RMS. These studies have not been included below.

 

Cage tests.

seed treatment:

a) Maus 2002. Colonies were fed with pollen from seed-treated maize (1 g a.s./1000 seeds). No effects on foraging activity, behaviour, egg laying activity, breeding succes, pollen and honey stores, colony strength and weight. Exposure and observation duration: 52 days.

b) Maus & Schoening 2001. Colonies were fed with pollen from seed-treated maize (49 g a.s./’unit’). No effects on mortality, foraging activity, behaviour, egg laying activity, pollen and honey stores, colony strength. Exposure and observation duration: 38 days.

c) Schmuck & Schoening 1999. Colonies were exposed to flowering rape seed treated with 1 kg a.s./’dt’. No effects on mortality and behaviour. Exposure and observation duration: 3 days. France.

d) Schmuck & Schoening 1999. Colonies were exposed to flowering rape seed treated with 1 kg a.s./’dt’. No effects on mortality and behaviour. Exposure and observation duration: 3 days. Sweden.

e) Schmuck & Schoening 1999. Colonies were exposed to flowering rape seed treated with 1 kg a.s./’dt’. No effects on mortality and behaviour. Exposure and observation duration: 3 days. UK.

f) Schmuck & Schoening 1999. Colonies were fed with sunflower honey treated with imidacloprid (up to 20 ug/kg) and untreated pollen. No effects on mortality, foraging activity, behaviour, food consumption, storage behaviour, egg laying activity, breeding succes, comb cell production, colony strength and weight. Exposure and observation duration: 39 days.

g) Schmuck & Schoening 1999. Colonies were fed with maize pollen treated with imidacloprid (up to 20 ug/kg) and untreated sunflower honey. No effects on mortality, foraging activity, behaviour, food consumption, storage behaviour, egg laying activity, breeding succes, comb cell production, colony strength and weight. Exposure and observation duration: 39 days.

h) Schmuck et al. 1999. Exposure to flowering sunflowers, which was either seed-treated (52 g a.s./ha) or sown as untreated succeeding crop after imidacloprid use. No effects on mortality and behaviour. Exposure and observation duration: 8 days.

i) Schmuck et al. 1999. Exposure to flowering sunflower, which was either seed-treated (45 g a.s./ha) or sown as untreated succeeding crop after imidacloprid use. No effects on mortality and behaviour. Exposure and observation duration: not reported, but likely 8 days as in similar trial above.

j) Schmuck et al. 1999. Exposure to flowering summer rape, which was either seed-treated (72 g a.s./ha) or sown as untreated succeeding crop after imidacloprid use. No effects on mortality and behaviour. Exposure and observation duration: 8 days.

k) Schmuck et al. 1999. Exposure to flowering summer rape, which was either seed-treated (72 g a.s./ha) or sown as untreated succeeding crop after imidacloprid use. No effects on mortality and behaviour. Exposure and observation duration: 8 days.

l) Wallner 1999. Exposure to flowering Phacelia, seed-treated (50 g a.s./ha). No effects on mortality, disorientation, foraging activity and honey yield. Exposure and observation duration: not reported in DAR.

m) Harris 1999. Exposure to flowering canola (OSR), seed-treated (51 g a.s./ha; 800 g/100 kg seed). No effects on mortality, foraging activity, brood development, colony strength. Exposure and observation duration: 43 days.

n) Brasse 1999. Exposure to flowering summer rape, seed-treated (63 g a.s./ha; 10.5 g/kg seed). No effects on mortality, foraging activity, brood development, colony strength. Exposure and observation duration: 21 days. It is mentioned that both colonies overwintered as full colonies.

r) Colin & Bonmartin 2000 and s) Colin 2003. Not considered valid by RMS.

spray treatment:

o) Schur 2001. Colonies exposed to full flowering apple orchards which had been sprayed during the mouse-ear stage (BBCH 10) at 0.105 kg a.s./L. No effects on mortality, foraging activity, behaviour, condition of the colonies and brood development. Exposure and observation duration: 7 days.

p) Bakker 2001. Colonies exposed to flowering Phacelia which was sprayed with 0.6 – 14 g a.s./ha during bee flight. When applied during bee flight, 0.6 g a.i./ha and 1.2 g a.i./ha of Confidor SL 200 had no effects on foraging activity and mortality of the honeybee Apis mellifera. At a rate of 2.0 g a.i./ha, 4.0 g a.i./ha and 9.0 g a.i./ha foraging activity was reduced on the day of application, but no effects on mortality were observed.

At the highest test rate (14.0 g a.i./ha) statistically significant reduction in foraging

was found during the first two days, but no effects on mortality were observed. (Please note that the summary in the DAR states that mortality was significantly higher than control in dose rates 2.0-14.0 g a.s./ha; RMS Germany agrees that this has been a mistake and that in fact no mortality occurred in the study).

q) Bakker 2003. Colonies exposed to flowering Phacelia which had been sprayed with 21 or 35 g a.s./ha 24, 48 and 96 h before exposure. Foraging activity significantly reduced in all treatments. Mortality twice as high as in control.

 

Field tests.

seed treatment

a) Schmidt et al. 1998.  Exposure to flowering sunflowers, seed-treated with 59 g a.s./ha (0.7 mg a.s./seed). No effects on mortality, behaviour, hive weight, foraging, flight and pollen collection activity. Exposure and observation duration: 14 days

b) Schuld 2002.  Exposure to flowering oilseed rape, seed-treated with 1051 g a.s./100 kg seed = 31.4 g a.s./ha. No effects on mortality, behaviour, brood development, flight intensity and colony strength. Exposure and observation duration: 15 days. After flowering all colonies were transferred to the bee research institute and developed normally up to the end of the season.

c) Schulz 2000.  Exposure to flowering sunflower, seed-treated with imidacloprid (dose not reported, but assumed to be equivalent to the intended use in sunflower, i.e. ca. 60 g a.s./ha). No effects on mortality, foraging behaviour, colony development, flight activity. Exposure and observation duration: 17 days.

d) Scott-Dupree 2001. Exposure to flowering oilseed rape, seed-treated with 1000 g a.s./100 kg seed (seed dressing rate 6-7 lbs/acre) or 600 g /100 kg seed. No effects on mortality, behaviour, foraging activity, brood development, honey yield and colony strength. Exposure and observation duration: 1 month.

e) Stadler 2000.  Exposure to flowering sunflowers, seed-treated with 0.2458 mg a.s./seed. No adverse effects on mortality, flight and foraging activity, brood development,honey and pollen stores and colony strength. Exposure and observation duration: 24 days.

f) Szentes 1999. Exposure to flowering sunflowers, seed-treated with 38 g a.s./ha. No adverse effects on mortality, foraging activity, behaviour, input of nectar and pollen, egg laying activity, brood development and colony strength. Exposure and observation duration: 15 days.

g) Kemp & Rogers 2002. Exposure to flowering clover fields which had been sprayed with imidacloprid (presumably before introduction of bees since no effects were seen; dose unknown) and which were sown on fields on which two years earlier imidacloprid had been applied as soil treatment (potato in-furrow application, 204 g a.s./ha), one year earlier grain had been sown (according to the DAR treated with 204 or 312 g a.s/ha; according to addendum 4 not treated), and earlier in the same season also a clover crop had been sprayed (dose unknown). All colonies placed in the treated clover fields developed normally and did not show any impact of the test product on colony strength, brood status, honey storage and behaviour. Few colonies showed symptoms of chalkbrood, Varroa and European foulbrood. Exposure and observation duration:8 weeks. However, results for bee effects are not considered useful due to missing data on dose rate and introduction time.

h) Kirchner 1998. Effects of sublethal doses on foraging behaviour and orientation ability, both in the lab (groups of individual bees) and in the field (whole colonies). Bees were fed with sucrose solution containing 10 to 100 ppb. In concentrations of 20 ppb and more imidacloprid has a significant impact on the behaviour on foraging honeybees: The frequency of trembling dances is increased, the number of visits at the contaminated food is decreasing, corresponding to increase of concentration and time the frequency of waggeling dances is decreasing and also the precision in the informations (regarding distance and direction) given by the waggeling bees is decreasing. The combination of these changings in the behaviour of the bees at concentrations of 20 ppb and more may lead to a total suspension of foraging, but it is not likely to cause a damage in honeybee colonies

i) Kirchner 2000. Effects of sublethal doses on the behaviour (trembling, waggling dances, learning behaviour (PER), both in the lab and in the field, of imidacloprid, dihydroxy-imidacloprid and olefine-imidacloprid. A short-term effect of imidacloprid on the learning process was only recorded at concentrations > 100 ppb. Olefine-imidacloprid did not have effects <100 ppb, learning behaviour was significantly reduced at 500 ppb. Dihydroxy-imidacloprid had no effect at 100 ppb, learning behaviour was significantly reduced at 2 ppm. 

j) Faucon 2004. Colonies fed for 1 month 3 times/week with sugar solution treated with 0.5 or 5 ug/kg imidacloprid. Total exposure duration 1 month, total observation duration 8 months (including overwintering). No adverse effects on flight activity, mortality , brood development. After the winter, treated and control colonies were of comparable status (brood, strength, weight, health).

k) Pham-Delegue and Cluzeau 1999. Test programme to investigate bee losses in France. Colonies exposed to seed-treated flowering sunflowers). No adverse effects on mortality, flight activity, health status, brood development, colony strength and yield of honey and pollen (dose rate and test duration not reported in DAR). No adverse effect on the number of returning foragers. No adverse effects on bumblebees. Also lab and cage studies were done A concentration related change in the behaviour of the bees was observed when foraging on contaminated food. No impact on honeybees was observed when imidacloprid was used in

combination with fungicides for seed dressing. No impact on bumblebees was observed when imidacloprid was used in sunflowers for seed treatment. A concentration related effect of imidacloprid on social behaviour and food consumption was observed for honeybees. It was observed that imidacloprid offered in sublethal doses on the oral and the contact way has concentration related effects on the learning ability of honeybees. It is assumed that imidacloprid is rapidly metabolised in the bee body and it may be concluded that the active substance therefore can not be detected in dead bees after intoxication..

l) Mayer & Lunden 1997. 1) Cage study where honeybees, alkali bees and leafcutting bees were exposed to 2 or 8 h field-aged residues on sprayed alfalfa (0.028 – 0.28 kg/ha). Honeybees were a little bit more sensitive than the other species. Mortality increased with dose. 2) Colonies were given the choice between untreated and treated (2-500 ppm) syrup. Visits decreased with increasing imidacloprid concentration. 3) Flowering dandelion was sprayed with 50 or 112 g a.s./ha. Foraging bees were counted 0.5, 1 and 4 hours after spraying. Foraging activity decreased with increasing imidacloprid concentration. 4) Spraying of 112 g a.s./ha to apple orchard with 10% of apple flowers open and with on average 6 flowering dandelions per m2 understorey. Spraying was done before bee flight, at 8 am; foraging activity and mortality were checked on that same day (foraging activity between 11 and 14 h). No adverse effects.

spray treatment:

m) Schur 2001.  Colonies exposed to full flowering apple orchards which had been sprayed during the mouse-ear stage (BBCH 10) at 0.105 kg a.s./L, in Germany. No effects on mortality, foraging activity, behaviour, condition of the colonies and brood development. Exposure and observation duration for 7 days (4 weeks for brood).

n) Cantoni 1998.  Colonies exposed to full flowering apple orchards which had been sprayed during the mouse-ear stage (BBCH 10) at 150 g a.s./ha (based on 1500 L spray liquid/ha containing 50 mL/hL Confidor SL 200; info from report amendment dd 17/09/2009). Study performed in Italy. No adverse effects on foraging activity, colony weight, honey yield and number of returning bees. Exposure and observation duration: 11 days.

See also field study g) above.

other studies:

o) Belzunces et al 1998. Marked foragers from small honeybee colonies were followed while foraging on feeders containing sucrese solution (0.1 and 1 mg/L i.e. 100 ppb and 1 ppm). Bees which had ingested the 1 ppm sucrose solution shortly did not return to the feeder and showed symptoms of poisoning while bees which had ingested uncontaminated solution returned frequently to the control feeder. The poisoned bees could not be found in the hives any more. No difference could be observed between bees which had ingested the 100 ppb sucrose solution and control bees. At this concentration the number of marked bees observed at both the treated and the control feeder was comparable and variability, respectively, was on the level. No symptoms of poisoning could be observed in the test colonies at 100 ppb. Also a laboratory test was performed to investigate metabolism of imidacloprid in honeybees, but information on this part of the study was not reported and thus cannot be used.

 

Bielza 2000. This study is presented in section 10.5 (non-target arthropods) of the DAR but is included here because it gives information on effects on bumblebees. Greenhouse trial in SE Spain. Soil-application of 150 g imidacloprid/ha (0.75 L Confidor 200 LS/ha on flowering tomato 38, 48, 58 and 68 days after transplanting of tomato plants. Assessments of pollinating activities were performed 38, 44, 52, 59, 66, 73 and 80 days after transplant. No adverse on pollination (percentages of flowers pollinated, aborted, closed/non-marked and marked, as well as bumblebee flight frequencies) were detected. After laboratory evaluation of hives at the end of the experiment, no significant differences were detected between treatments for any of the parameters studied. 

 

 

Further studies in greenhouse

Not included in the DAR. Submitted to Ctgb in June 2011.

Vacante (1997). In this greenhouse trial in Italy (Sicily), bumblebees were introduced to tomato plants 7 days after treatment (soil-application of 178 or 267 g imidacloprid/ha) for pollination purpose. Effects on bumblees were not studied, but no adverse on pollination (number of fruits set; fruit weight) were detected. The authors conclude that a waiting period of 7 days between treatment and introduction of Bombus terrestris is sufficient to record no reduction in impollination.

 

 

Residues in succeeding crops

Seven studies which measured residues in succeeding crops are available in the DAR. The summary below is added by Ctgb based on the DAR (some of these studies are also mentioned above).

 

Schmuck et al 1999 BIE2003-221, BIE2003-220, BIE2003-219, BIE2003-218;  Residues measured in sunflower nectar and pollen, maize pollen and rape nectar and pollen; these untreated crops were sown in soils with imidacloprid residue 0.0127-0.0178 mg/kg. No residues of imidacloprid (LOQ 5 ppb) and the imidacloprid metabolites monohydroxy- (LOQ 5 ppb) and olefine- (LOQ 10 ppb) were detected in nectar, pollen or honey from rape, clover or maize planted as succeeding crops (all residues < LOD; LOD typically 1/3 of LOQ).

 

Lagarde 2001, BIE2003-189; In sunflower crops, Lagarde (2001) reported detectable residues in 1 of 4 nectar (1.6 ppb) and in 1 of 14 pollen (1.5 – 2 ppb) samples but it is unclear from the study report whether the positive results were obtained from seed-treated or untreated crop plants. From a comparative measurement in sunflower seedlings, Lagarde (2001) recorded a 40-fold higher imidacloprid adsorption rate in seed-treated sunflower crops compared to sunflower plants grown as succeeding crops.

 

Kemp and Rogers 2002, BIE2003-181: Residues were measured in nectar and pollen of clover crops, sown in soil with approximately 28 months ageing period which after ageing had residues of 14-25 ppb. All clover flowers, wildflowers pollen, nectar and uncapped honey did not have any detectable levels of imidacloprid or its hydroxy and olefine metabolites (all residues < LOD; LOD typically 1/3 of LOQ; LOQ 2 ppb for a.s. and metabolites).

 

Furthermore, two new studies were submitted by Bayer (28/04/2011, CD no. 5172) and summarised and evaluated by Ctgb (RES, 02/05/2011):

 

Nikolakis et al 2011a (Laacher Hof):

In autumn 2007 a mixture of imidacloprid, fuberidazol, imazalil and triadimenol was applied and incorporated down to 20 cm soil depth (Laacher Hof, Germany). The rate corresponded to 126 g imidacloprid/ha and the application was performed to represent a long-term soil plateau concentration of imidacloprid simulating the consecutive use of imidacloprid on the same plot over several years. On the same day, imidacloprid-treated winter wheat seeds were sown at a nominal sowing rate of 180 kg seeds/ha (corresponding to 126 g imidacloprid/ha). The winter wheat was harvested at 30 July 2008 and imidacloprid-free oil-seed rape seeds were sown on 18 August 2008. No further crops was sown during the intervening period after harvesting of winter wheat and sowing of the oil-seed rape seeds. During the flowering period of the oil-seed rape a gauze tunnel was set up and a honeybee colony (Apis mellifera carnica) was installed inside the tunnel. Nectar- and pollen foraging honeybees were manually collected inside the tunnel  (on 3 different sampling days) and stored deep frozen (-17 to -21 oC). Afterwards, the frozen honeybees were worked up by separating pollen loads from the legs of the bees an by extracting nectar by puncturing the honey bulbs in the bees with an ultra-fine syringe.   

Results:

Directly after spray application  and incorporation, mean measured concentration of imidacloprid was 45.7 µg/kg dry soil. Directly before sowing of the OSR, mean measured concentration of imidacloprid was 18.8 µg/kg dry soil.

Residues of imidacloprid in oil-seed rape nectar collected on the imidacloprid treatment test plot were always below the LOD of 0.3 ppb. The imidacloprid concentration in the three pollen samples from the imidacloprid treatment test plot was determined to be 0.002 mg a.s./kg, respectively. The imidacloprid-monohydroxy and imidacloprid-olefine concentration of all pollen and nectar samples from the treatment test plot was always below the LOD of 0.3 ppb.

 

Nikolakis et al 2011b (Hoefchen):

In autumn 2007 a mixture of imidacloprid, fuberidazol, imazalil and triadimenol was applied and incorporated down to 20 cm soil depth (Höfchen, Germany). The rate corresponded to 126 g imidacloprid/ha and the application was performed to represent a long-term soil plateau concentration of imidacloprid simulating the consecutive use of imidacloprid on the same plot over several years. On the same day, imidacloprid-treated winter wheat seeds were sown at a nominal sowing rate of 180 kg seeds/ha (corresponding to 126 g imidacloprid/ha). The winter wheat was harvested at 1 August 2008 and imidacloprid-free oil-seed rape seeds were sown on 21 August 2008. No further crops was sown during the intervening period after harvesting of winter wheat and sowing of the oil-seed rape seeds. During the flowering period of the oil-seed rape a gauze tunnel was set up and a honeybee colony (Apis mellifera carnica) was installed inside the tunnel. Nectar- and pollen foraging honeybees were manually collected inside the tunnel  (on 4 different sampling days) and stored deep frozen (-17 to -21 oC). Afterwards, the frozen honeybees were worked up by separating pollen loads from the legs of the bees an by extracting nectar by puncturing the honey bulbs in the bees with an ultra-fine syringe.

Results:

Directly after spray application and incorporation, mean measured concentration of imidacloprid was 34.0 µg/kg dry soil. Directly before sowing of the OSR, mean measured concentration of imidacloprid was 15.2 µg/kg dry soil.

Residues of imidacloprid in oil-seed rape nectar collected on the imidacloprid treatment test plot were always below the LOD of 0.3 ppb. The imidacloprid concentration in two of the four pollen samples from the imidacloprid treatment test plot matched the limit of detection (LOD) of 0.0003 mg a.s./kg, and in the other two pollen samples from the treatment test plot the imidacloprid concentration was <LOD. The imidacloprid-monohydroxy and imidacloprid-olefine concentration of all pollen and nectar samples from the treatment test plot was always below the LOD of 0.3 ppb. The residue finding of imidacloprid-monohydroxy in one of the pollen samples collected on the control test plot (“Pollen C2”) is suspected to result from a contamination in the analytical laboratory, as neither parent imidacloprid nor imidacloprid-olefine was detected in this particular sample.

 

 

Dust deposition maize

 

Nikolakis, A.; Casadebaig, J.; Appert, C.; Schoening, R. 2009 Summarised/evaluated by Ctgb, May 2011

Monitoring of dust drift deposits during the sowing of maize seeds, treated with Poncho® (Clothianidin FS 600) on bee health study plots in France with Poncho® (Clothianidin FS 600) treated maize seeds. The analytical verified content of clothianidin per individual maize seed was 0.50-0.51 mg a.s/maize seed.

All fields were sown with commercial vacuum-pneumatic single-kernel maize sowing machine which were modified with deflectors. Overall, four different machines with identical modification principle were used on the fields under investigation. Sowing rate was 100,000 seeds/ha. On each site of the field in 1 m distance to the sowing area, an array of 10 polystyrene Petri-dishes with an intra-row spacing of 1 m had been arranged horizontally on metal bearings at a height of approx. 1.5 to 2 cm above the soil surface or at the height of the vegetation surface, depending on the actual field boundary morphology. The actual placement of the Petri-dishes on the 4 field edges followed the actual wind direction, in order to collect as much dust as possible. Sowing parameters and environmental conditions were presented.

 

The maximum 90th%ile ground deposition value as determined along the four borders of each plot, respectively, was 0.092 g clothianidin a.s./ha.

Considering all plots, despite the high wind speed of plot Champagne 2 and despite a > 30 degrees wind angle, the arithmetic mean of the 90th%ile values is 0.0522 g a.s./ha. In this calculation the < LOQ value of Aquitaine plot was set to 0.014 g a.s./ha. No reference (technique) was used in the study. Only a distance of 1 m to the sowing area has been performed in the monitoring study.

 

In other studies (from Syngenta) evaluated by The Netherlands, the highest deposition of dust occurs at a larger distance than 1 m (see below). The downwind ground deposition is not considered a maximum conservative value for all plots because no < LOD/LOQ was measured in the Alsace and Champagne 2 plots. Therefore it is considered that a determination of a drift reduction percentage from this study cannot be performed adequately. A comparison with the other available and evaluated studies is also not possible because the distance and/or the height of the measurements is/are different. Therefore this study is not used in the risk assessment.

 

Nikolakis & Schoening 2008. Summary/evaluation by PRI (WUR, The Netherlands) in 2009.

Drift deposition pattern of seed treatment particles abraded from Clothianidin FS 600 dressed maize seeds and emitted by different modified and un-modified pneumatic and mechanical sowing machines.

Dust emission was studied from different maize sowing machines (vacuum pneumatic; pos/neg pressure; mechanical; with/without deflectors) and for different seed coating types. Dust drift can significantly be reduced by means of adaptations to the machine like deflectors, redirecting air towards the fertilizer bins, and redirecting exhaust air towards soil surface. Mechanical and positive air pressure maize sowing machines produce less dust drift than the standard negative pressure sowing machines.  Dust drift deposit on soil surface is lower than of airborne dust drift at 1 m height at the same distance.

 

Other studies on dust deposition from maize sowing

The studies presented below are owned by Syngenta and were not performed with clothianidin. However, dust drift from treated seeds is not considered to be dependent on active substance.Therefore, the studies are presented below to give a overall picture of dust drift from maize seeds. The summary/evaluation was made by PRI (WUR, The Netherlands) in 2009.

 

In the study of Tummon, 2006 it was demonstrated that the peak of 0.55% of applied dose was found at 5 m distance (in average and in two out of 3 measurements 0.49%-0.62%).

 

In the study of Tummon & Jones, 2007 it was demonstrated that for the conventional sowing machine the highest dust drift deposition of dust of 0.81 % (0.80%-0.82%) occurs at 5 m distance. For the maize sowing machine using deflectors on the air exhaust pipe redirecting the air towards the seed hoppers it was demonstrated that the highest dust deposition is 0.037% (0.019%-0.24%) and  occurs at 10 m distance but is still lower than the value at 50 m distance for the conventional sowing machine without air deflectors. Dust deposition decreases with increasing distance to a level of 0.004% at 50 m distance.

 

In the study of Solé, 2008 it was demonstrated that for the conventional sowing machine the dust drift deposition values for the two replications the highest deposition of dust of 0.99 % (0.87%-1.12%) occurs at 5 m distance.

For the maize sowing machine using dual tube deflectors on the air exhaust pipe redirecting the air towards the soil surface it was demonstrated that the highest dust drift deposition is 0.299% (0.30%-0.569%) and occurs at 10 m distance.

 

In conclusion, the highest drift value from maize sowing with deflectors as measured in the above studies is 0.55% of the applied dose. This value will be used in the risk assessment.

 

 

Dust deposition sugarbeet

Summarised/evaluated by Ctgb, May 2011

 

Lueckmann, J. & Staedtler, T. 2009

Monitoring of dust drift deposits during and after the sowing of sugar beet pills, treated with Poncho® Beta or Poncho® Beta Plus in Germany with commercially dressed sugar beet pills (nominally 0.60 mg clothianidin & 0.08 mg beta-Cyfluthrin (+ 0.30 mg imidacloprid) per individual sugar beet pill.

All 20 fields were sown with mechanical sowing machines. The test field sizes varied between 1.5 and 21.0 ha. Shortly before sowing, the wind direction was determined and ten Petri-dishes were placed in groups of two at a distance of 1, 3 and 5 m (in total 30 Petri-dishes) at the down-wind border of the field. To monitor a potential dust drift during a 24h-period after sowing ten new Petri-dishes were placed in pairs at the approximate middle of each field side at a distance of 1 m to the field borders. Weather conditions were presented.

 

The 90th%ile residue levels during the sowing operation and the 24h-sampling were all below the limit of determination (LOD 0.004 g a.s./ha). These results indicate that the dust drift produced during and after the sowing of Poncho® Beta Plus treated sugar beet pills is very limited. From these results it can be concluded that standard mechanical sowing of sugar beet pills lead to low off-crop deposition values when sown with commercial sowing equipment.

This is in line with the current matrix ‘Relevance of dust for pesticide treated seeds’.

The conclusion in the matrix that dust formation is not relevant for sugar beet can be used for risk assessment.

 

Nikolakis, A., Schoening, R. 2008

Drift deposition pattern of seed treatment particles abraded from Poncho® Beta Plus treated sugar beet pills and emitted by a typical mechanical sowing machine in Germany with commercially treated sugar beet pills, treated with Poncho® Beta Plus, which contains the neonicotinoid active substances clothianidin and imidacloprid (analysed neonicotinoid seed loading: 0.589 mg clothianidin a.s./pill, 0.325 mg imidacloprid a.s./pill). The actual machine tested was a Kverneland Accord Monopill SE, a 12-row mechanical precision sugar beet planter (12 hoppers). The size of each drilling plot was about 1.0 ha with an orientation of the sampling devices 180° ± 30° to the prevailing wind direction. An average wind speed of 2 - 5 m/s and a deviation of wind direction of maximum ± 30° to the perpendicular wind direction (i.e., 180° to the sampling devices) were the target conditions during drilling.

All clothianidin-containing dust and abrasion particles which deposited at 1, 3, 5, 10, 20, 30 and 50 metres distance from the drilling area during sugar beet sowing (“primary drift”) were sampled in polystyrene Petri-dishes (Ø 13.7 cm, 147.41 cm²), filled with an acetonitrile-water mixture (2/8, v/v). For each sampling distance, three arrays of 10 Petri-dishes each were installed with a distance of 1 metre between the dishes and 50 m between the arrays.

Passive dust-drift collectors were installed at 1 m, 2 m, 3 m, 4 m and 5 m above the soil surface. The dust collectors were made of a polypropylene fabric mesh, built up of filaments with a 0.80 × 0.18 mm cross-section. This type of collector has a slightly oval shape with a length of ≈ 85 mm and a diameter of ≈ 65 mm; at its poles, the diameter is ≈ 50 mm. The polypropylene fabric mesh collectors were pinned on each end of horizontal metal rods, which in turn were mounted at the respective height on a vertical tripod-pylon (height ≈ 6 m), giving in total 10 collectors per pylon (2 at each height). In all arrays, a pylon was installed at 5 and 30 m distance from the drilling area, respectively, resulting in 6 collectors per height per distance.

Weather conditions were presented.

 

All 90th%ile values for ground deposition (“primary” and “secondary” drift, respectively) were at least below the limit of quantification (i.e. = LOQ = 0.014 g a.s./ha).

Considering atmospheric drift, clothianidin was measured in 75% of the passive polypropylene-mesh-collectors which were set up in different heights at 5 and 30 m distance from the sowing area. However, in contrast to ground deposition data, which are direct, area-related exposure figures [g a.s./ha], the airborne residues determined in passive samplers of an unknown collection efficiency only allow for a derivation of qualitative conclusions.

The consistent overall lack of quantifiable deposition within the off-field area suggests that airborne particles, trapped by passive polypropylene-mesh-collectors in the same area, are mainly subject to further dispersion and dilution.

 

These results indicate that the dust drift produced during and after the sowing of Poncho®

Beta Plus treated sugar beet pills is very limited.From these results it can be concluded that standard mechanical sowing of sugar beet pills lead to low off-crop deposition values when sown with commercial sowing equipment.This is in line with the current matrix ‘Relevance of dust for pesticide treated seeds’.The conclusion in the matrix that dust formation is not relevant for sugar beet can be used for risk assessment.

 

 

Reference list

 

This appendix serves only to give an indication of which data have been used for decision making; as a result of concurring applications for authorisations, the data mentioned here may have been used for an earlier decisions as well. Therefore, no rights can be derived from this overview.

 

 


Reference list of protected studies:

 

Reference

Annex

point/

reference

number

Author(s)

Year

Title

Source (where different from company)

Report no.

GLP or GEP status (where relevant)

Published or not

BVL registration number

Data

protection

claimed

 

 

Y/N

Owner

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIA-8.3.1.1;

AIIIA-10.4

 

Cole, J.H.

1994

The acute oral and contact toxicity to Honey bees of compound NTN 33893 technical.

BAY 158/901384 ! MO-99-002223

GLP, unpublished

BIE2003-138

Y

BAY

 

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIA-8.3.1.1

 

Faucon, J-P. et al.

2004

Etude experimentale de la toxicite de l' imidaclopride distribue dans le sirop de nourrisseurs a des colonies d' abeilles (Apis mellifera).

open, published

BIE2004-141

N

-

 

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIA-8.3.1.1;

AIIIA-10.4

 

de Ruijter, A.

1999

Honey bee (Apis mellifera L.) oral toxicity study in the laboratory with imidacloprid techn.

AH99.4.22.4 ! MO-99-015617

GLP, unpublished

BIE2003-140

Y

BAY

 

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIA-8.3.1.1;

AIIIA-10.4

 

de Ruijter, A.

1999

Honey bee (Apis mellifera L.) contact toxicity study in the laboratory with imidacloprid techn.

AH99.4.22.3 ! MO-99-016047

GLP, unpublished

BIE2003-139

Y

BAY

 

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIA-8.3.1.1;

AIIIA-10.4

 

Schmitzer, S.

1999

Laboratory testing for toxicity (acute oral LD50) of NTN 33893 on Honey bees (Apis mellifera L.) (Hymenoptera, Apidae).

6400036 ! MO-99-015831

GLP, unpublished

BIE2003-141

Y

BAY

 

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIA-8.6

AIIIA-10.4

 

de Ruijter, A.

1999

Bumblebee (Bombus terrestris L.) oral toxicity study in the laboratory with imidacloprid techn.

AH99.4.22.2

GLP, unpublished

PFL2003-211

Y

BAY

 

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIA-8.6;

AIIIA-10.4

 

de Ruijter, A.

1999

Bumblebee (Bombus terrestris L.) contact toxicity study in the laboratory with imidacloprid techn.

AH99.4.22.1

GLP, unpublished

PFL2003-210

BIE2003-142

Y

BAY

 

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIIA-10.4;

 

Mayer, D.F. and Lunden, J.D.

1997

Effects of imidacloprid insecticide on three bee polinators.

Journ: Horticultural science, 29, 1997, 93-97

Lit. 7876

not GLP, published

AVS2004-245

N

-

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

III A, 10.4.

 

Anonymous

1991

Council directive of 15 July 1991 concerning the placing of plant protection products on the market

Report No.: 91/414/EEC,

Edition Number: M-110333-01-1

Non GLP, unpublished

BIE2003-169

Yes

BCS

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

III A, 10.4.

Bai, D.;
Lummis, S.C.R.; Leicht, W.;
Breer, H.;
Sattelle, D.B.

1991

Actions of imidacloprid and a related nitromethylene on cholinergic receptors of an identified insect motor neurone

Publisher:SCI, Location:Great Britain,

Pestic Science, Volume:33, Pages:197-204,

Report No.: MO-03-011632,

Edition Number: M-110734-01-1

Non GLP, published

BIE2003-159

No

--

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIIA-10.4

 

Barth, M.

2000

Acute oral toxicity of substance B to the honeybee Apis mellifera L. under laboratory conditions prolonged for 10 days.

00 10 48 0502b

not GLP, unpublished

BIE2003-161

Y

BAY

 

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIIA-10.4

 

Barth, M.

2000

Acute toxicity of substance A to the honeybee Apis mellifera L. under laboratory conditions.

00 10 48 0501

not GLP, unpublished

BIE2003-160

Y

BAY

 

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIIA-10.4

 

Barth, M.

2000

Acute oral toxicity of substance C to the honeybee Apis mellifera L. under laboratory conditions prolonged for 10 days.

00 10 48 0502c

not GLP, unpublished

BIE2003-162

Y

BAY

 

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIIA-10.4;

AIIIA-10.4.1

 

Barth, M.

2001

Acute toxicity of Imidacloprid SL 200 to the honeybee Apis mellifera L. under laboratory conditions.

011048048

GLP, unpublished

BIE2003-149

Y

BAY

 

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIIA-10.4

 

Belzunces, L.P., Guez, D. and Suchail, S.

1998

Effets de l'imidaclopride chez l'abeille Apis mellifera.

MO-03-011446

not GLP, published

BIE2003-163

N

-

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIIA-10.4

 

Bitterman, M.E., Menzel, R., Fietz, A. and Schäfer, S.

1983

Classical conditioning of proboscis extension in honeybees (Apis mellifera).

Lit. 7688

not GLP, published

BIE2003-164

N

-

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIIA-10.4

 

Brasse, D.

1999

Preliminary report on a tunnel test with imidacloprid-treated summper rape.

MO-03-011517

not GLP, unpublished

BIE2003-165

Y

BAY

 

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIIA-10.4

 

Briggs, G.G., Bromilow, R.H. and Evans, A.A.

1982

Relationships between lipophilicity and root uptake and translocation of non-ionised chemicals by barley.

MO-03-011634

not GLP, published

BIE2003-166

N

-

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIIA-10.4

 

Bromilow, R.H. and Chamberlain, K.

1989

Designing molecules for systemicity.

MO-03-011894

not GLP, published

BIE2003-167

N

-

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIIA-10.4

 

Bruhnke, C.

2000

Repeat Test: Substance C: Feeding test on the honeybee Apis mellifera L. (Hymenoptera, Apidae), non-GLP.

IBA7242N

not GLP, unpublished

BIE2003-168

Y

BAY

 

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIIA-10.4

 

Decourtye, A., Lacassie, E. and Pham- Delègue, M.-H.

2002

Learning performances of honeybees (Apis mellifera L.) are differentially affected by imidacloprid according to the season.

MO-03-011573

not GLP, published

BIE2003-174

N

-

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIA-10.4

Decourtye, A.

2000

Impact de l'imidaclopride et de ses principaux metabolites sur l'abeille domestique Apis mellifera L: effects d'expositions chroniques sur la mortalite et l'apprentissage.

Engl. translation: Impact of Imidacloprid and its Main Metabolites on the honeybee Apis mellifera L.: Effects of Chronic Exposure on Mortality and Learning. I.N.R.A. National Institute of Agricultural Research, Bur-sur-Yvette.

MO-03-011479

not GLP, unpublished

BIE2003-173

Y

BAY

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIIA-10.4

 

Drescher, W.

1990

Examination of the bee toxicity for registration purposes - Laboratory testing.

900240

not GLP, unpublished

BIE2003-248

Y

BAY

 

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIIA-10.4

 

Drescher, W.

1990

Examination of the bee toxicity for registration purposes, laboratory testing.

900239

not GLP, unpublished

BIE2003-247

Y

BAY

 

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIIA-10.4

 

Ebadi, R., Gary, N.E. and Lorenzen, K.

1980

Effects of carbon dioxide and low temperature narcosis on honey bees, Apis mellifera.

MO-03-011881

not GLP, published

BIE2003-175

N

-

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIIA, 10.4.

Elbert, A.; Becker, B.; Hartwig, J.; Erdelen, C.

1991

Imidacloprid - a new systemic insecticide

Publisher:Bayer AG,

Location:Leverkusen,

Journal:Pflanzenschutz-Nachrichten,

Volume:44, Issue:2, Pages:113-136,

Report No.: Lit. 8666,

Edition Number: M-110655-01-1

Non GLP, published

BIE2003-177

No

--

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIIA-10.4

 

Guez, D., Suchail, S., Gauthier, M., Maleszka, R. and Belzunces, L.P.

2001

Contrasting effects of imidacloprid on habituation in 7- and 8-day-old honeybees (Apis mellifera).

MO-03-011619

not GLP, published

BIE2003-178

N

-

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIIA-10.4

 

Harris, L.

1999

1999 Evaluation of: Gaucho seed dressing applied to canola on the honey bee (Apis mellifera Linnaeus) at indian head, Saskatchewan (indian head research station site).

MO-03-000723

not GLP, unpublished

BIE2003-179

Y

BAY

 

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIIA, 10.4.

Ishii, Y.; Kobori, I.; Araki, Y.; Kurogochi, S.; Iwaya, K.; Kagabu, S.

1994

HPLC Determination of the new insecticide Imidacloprid and its behaviour in rice and cucumber

Publisher:American Chemical Society,

Location:USA,

Journal:Journal of Agricultural and Food Chemistry, Volume:42, Pages:2917-2921,

Report No.: MO-03-011544,

Edition Number: M-110488-01-1

Non GLP, published

BIE2003-180

No

--

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIIA-10.4

 

Kemp, J.R. and Rogers, R.E.L.

2002

Imidacloprid (Admire) residue levels following in-furrow application in potato fields in Prince Edward Island and New Brunswick.

MO-02-006773

not GLP, unpublished

BIE2003-181

Y

BAY

 

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIIA-10.4

 

Kirchner, W.H.

1998

The effects of sublethal doses of imidacloprid on the foraging behaviour and orientation ability of honeybees.

MO-03-000206

not GLP, unpublished

BIE2003-182

Y

BAY

 

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIIA-10.4

 

Kirchner, W.H.

2003

The effects of sublethal doses of imidacloprid, dihydroxy-imidacloprid and olefine-imidacloprid on the behaviour of honeybees.

MO-03-000205

not GLP, unpublished

BIE2003-183

Y

BAY

 

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIIA-10.4

 

Kling, A.

2000

Substance B: Assessment of side effects in a ten days feeding test on the honey bee, Apis mellifera L. in the laboratory - hive bees (< 5 days).

20001148/01-BLEU 2.

not GLP, unpublished

BIE2003-185

Y

BAY

 

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIIA-10.4

 

Kling, A.

2000

Substance C: Assessment of side effects in a ten days feeding test on the honey bee, Apis mellifera L. in the laborators - hive bees (< 5 days).

20001149/01-BLEU

not GLP, unpublished

BIE2003-187

Y

BAY

 

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIIA-10.4

 

Kling, A.

2000

Substance C: Assessment of side effects in a ten days feeding test on the honey bee, Apis mellifera L. in the laboratory - foraging bees (= 22 - 32 days).

20001149/01-BLEU 2.

not GLP, unpublished

BIE2003-186

Y

BAY

 

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIIA-10.4

 

Kling, A.

2000

Substance B: Assessment of side effects in a ten days feeding test on the honey bee, Apis mellifera L. in the laboratory - foraging bees (= 22 - 32 days).

20001148/01-BLEU

not GLP, unpublished

BIE2003-184

Y

BAY

 

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIIA, 10.4.

Knaust, H.-J.; Poehling, H.-M.

1992

Studies of the action of imidacloprid on grain aphids and their efficiency to transmit BYD-virus

Journal:Pflanzenschutznachrichten,

Volume:45, Issue:3, Pages:1992,

Report No.: MO-03-011631,

Edition Number: M-110727-01-1

Non GLP, published

BIE2003-188

No

--

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIIA-10.4

 

Kurogochi, S., Maruyama, M. and Araki, Y.

1988

Absorption and translocation of [14C]-NTN 33893 in eggplants and rice plants.

NR1273

not GLP, unpublished

BIE2003-131

Y

BAY

 

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIIA-10.4

 

Lagarde, F.

2001

Sunflower and Gaucho: CETIOM results.

MO-03-011654

not GLP, published

BIE2003-189

N

-

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIIA, 10.4.

Leicht, W.

1993

Imidacloprid - a chloronicotinyl insecticide

Pesticide Outlook, Volume:4 (3), Pages:17-21,

Report No.: MO-03-011386,

Edition Number: M-109880-01-1

Non GLP, published

BIE2003-190

No

--

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIIA, 10.4.

Liu, M. Y.;
 Casida, J. E

1993

High affinity binding of [3H]Imidacloprid in the insect acetylcholine receptor

Pesticide Biochemistry and Physiology,

Report No.: MO-00-006412,

Edition Number: M-030113-01-1

Non GLP, published

BIE2003-191

No

--

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIIA-10.4

 

Maus, C.

2002

Evaluation of the effects of residues of Imidacloprid FS 600 in maize pollen from dressed seeds on honeybees (Apis mellifera) in the semifield.

MAUS/AM 018

GLP, unpublished

BIE2003-192

Y

BAY

 

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIIA-10.4

 

Maus, C. and Schoening, R.

2001

Effects of residues of imidacloprid in maize pollen from dressed seeds on honey bees (Apis mellifera).

MAUS/AM 012

GLP, unpublished

BIE2003-193

Y

BAY

 

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIIA-10.4

 

Mayer, D.F., Lunden, J.D. and Husfloen, M.R.

1991

Integrated pest and pollinators investigations 1991 (including hony bee toxicity of NTN 33893).

103815

not GLP, unpublished

BIE2003-194

Y

BAY

 

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIIA-10.4

 

Mayer, D.F., Patten, K.D., Macfarlane, R.P. and Shanks, C.H.

1994

Differences between susceptibility of four pollinator species (Hymenoptera. Apoidea) to field weathered insecticide residues.

Lit. 8135

not GLP, published

BIE2003-195

N

-

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIIA, 10.4.

Methfessel, C.

1992

Die Wirkung von Imidacloprid am nikotinergen Acetylcholin-Rezeptor des Rattenmuskels

Journal:Pflanzenschutznachrichten,

Volume:45, Issue:3, Pages:369-380,

Report No.: MO-03-011633,

Edition Number: M-110744-01-1

Non GLP, published

BIE2003-196

No

--

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIIA-10.4

 

Nauen, R., Ebbinghaus-Kintscher, U. and Schmuck, R.

2001

Toxicity and nicotinic acetylcholine receptor interaction of imidacloprid and its metabolites in Apis mellifera (Hymenoptera: Apidae).

Lit. 7882

not GLP, published

BIE2003-197

N

-

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIIA-10.4

 

Pham-Delegue, M.-H. and Cluzeau, S.

1999

Effects of crop protection products on bees, effects of GAUCHO seed dressing on losses of foraging bees with comments on the summary report from Gaelle Curé and Bernard Ambolet, 16.11.1998.

MO-03-011487

not GLP, unpublished

BIE2003-198

Y

BAY

 

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIIA-10.4

 

Ray, S. and Ferneyhough, B.

1998

Behavioural development and olfactory learning in the honeybee (Apis mellifera).

MO-03-012018

not GLP, published

BIE2003-199

N

-

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIIA-10.4

 

de Ruijter, A.

1999

Bumblebee (Bombus terrestris L.) oral toxicity study in the laboratory with imidacloprid techn.

AH99.4.22.2

GLP, unpublished

BIE2003-143

Y

BAY

 

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIA-6.1;

AIIIA-10.4

 

Sakamoto, H.

1991

Metabolism of [pyridinyl-14C-methyl]-NTN 33893 in rice plants (nursery box application).

NR1284

GLP, unpublished

BIE2003-132

RIP2003-1689

Y

BAY

 

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIIA-10.4

 

Schmidt, H.W., Schmuck, R. and Schoening, R.

1998

The impact of Gaucho 70 WS seed treated sunflower seeds on honey bees.

BF 1/98

not GLP, unpublished

BIE2003-201

Y

BAY

 

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIIA-10.4

 

Schmitzer, S.

1995

Laboratory testing for toxicity (acute contact and oral LD50) of Confidor WG 70 to honey bees (Apis mellifera L.) (Hymenoptera, Apidae).

780036 ! MO-00-007456

GLP, unpublished

BIE2003-203

Y

BAY

 

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIIA-10.4

 

Schmitzer, S.

1995

Laboratory testing for toxicity (acute contact and oral LD50) of Confidor SC 200 to honey bees (Apis mellifera L.) (Hymenoptera, Apidae).

790036

GLP, unpublished

BIE2003-202

Y

BAY

 

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIIA-10.4

 

Schmitzer, S.

1999

Laboratory testing for toxicity (acute oral LD50) of WAK 4103 on honey bees (Apis mellifera L.) (Hymenoptera, Apidae).

6340036

GLP, unpublished

BIE2003-204

Y

BAY

 

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIIA-10.4

 

Schmitzer, S.

1999

Laboratory testing for toxicity (acute oral LD50) of WAK 3772 on honey bees (Apis mellifera L.) (Hymenoptera, Apidae).

6330036

GLP, unpublished

BIE2003-206

Y

BAY

 

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIIA-10.4

 

Schmitzer, S.

1999

Laboratory testing for toxicity (acute oral LD50) of WAK 3839 on honey bees (Apis mellifera L.) (Hymenoptera, Apidae) - limit test.

6390036

GLP, unpublished

BIE2003-208

Y

BAY

 

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIIA-10.4

 

Schmitzer, S.

1999

Laboratory testing for toxicity (acute oral LD50) of BNF 5119B on honey bees (Apis mellifera L.) (Hymenoptera, Apidae) - limit test -.

6380036

GLP, unpublished

BIE2003-209

Y

BAY

 

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIIA-10.4

 

Schmitzer, S.

2000

Laboratory testing for toxicity (acute oral LD50) of WAK 5074 on honey bees (Apis mellifera L.) (Hymenoptera, Apidae) - limit test.

7150036

GLP, unpublished

BIE2003-210

Y

BAY

 

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIIA-10.4

 

Schmitzer, S.

1999

Laboratory testing for toxicity (acute oral LD50) of WAK 4168 on honey bees (Apis mellifera L.) (Hymenoptera, Apidae) - limit test -.

6370036

GLP, unpublished

BIE2003-211

Y

BAY

 

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIIA-10.4

 

Schmitzer, S.

1999

Laboratory testing for toxicity (acute oral LD50) of WAK 4140 on honey bees (Apis mellifera L.) (Hymenoptera, Apidae) - limit test -.

6360036

GLP, unpublished

BIE2003-207

Y

BAY

 

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIIA-10.4

 

Schmitzer, S.

1999

Laboratory testing for toxicity (acute oral LD50) of WAK 3745 on honey bees (Apis mellifera L.) (Hymenoptera, Apidae).

6320036

GLP, unpublished

BIE2003-205

Y

BAY

 

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIIA-10.4;

AIIIA-10.4.1

 

Schmitzer, S.

2001

Effects of Imidacloprid SL 200 (acute contact and oral LD50) on honey bees (Apis mellifera L.) in the laboratory.

9981036 ! MO-01-020753

GLP, unpublished

BIE2003-148

Y

BAY

 

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIIA-10.4

 

Schmuck, R. and Schoening, R.

1999

Residues of imidacloprid and imidacloprid metabolites in nectar, blossoms, pollen and honey bees sampled from a british summer rape field and effects of these residues on foraging honeybees.

SXR/AM 003

GLP, unpublished

BIE2003-215

Y

BAY

 

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIIA-10.4

 

Schmuck, R. and Schoening, R.

1999

Residues of imidacloprid and imidacloprid metabolites in nectar, blossoms, pollen and honey bees sampled from a summer rape field in Sweden and effects of these residues on foraging honeybees.

SXR/AM 002

GLP, unpublished

BIE2003-214

Y

BAY

 

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIIA-10.4

 

Schmuck, R. and Schoening, R.

1999

Effects of imidacloprid residues in sunflower honey on the development of small bee colonies under field exposure conditions.

SXR/AM 004

GLP, unpublished

BIE2003-216

Y

BAY

 

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIIA-10.4

 

Schmuck, R. and Schoening, R.

1999

Effects of imidacloprid residues in maize pollen on the development of small bee colonies under field exposure conditions.

SXR/AM 005

GLP, unpublished

BIE2003-217

Y

BAY

 

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIIA-10.4

 

Schmuck, R. and Schoening, R.

1999

Residue levels of imidacloprid and imidacloprid metabolites in honeybees orally dosed with imidacloprid in standardised toxicity tests (EPPO 170).

SXR/AM 013

GLP, unpublished

BIE2003-224

Y

BAY

 

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIIA-10.4

 

Schmuck, R. and Schoening, R.

1999

Residues of imidacloprid and imidacloprid metabolites in nectar, blossoms, pollen and honey bees sampled from a French summer rape field and effects of these residues on foraging honeybees.

SXR/AM 001

GLP, unpublished

BIE2003-213

Y

BAY

 

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIIA-10.4

 

Schmuck, R., Schoening, R. and Schramel, O.

1999

Residue levels of imidacloprid and imidacloprid metabolites in nectar, blossoms and pollen of sunflowers cultivated on soils with different imidacloprid residue levels and effects of these residues on foraging honeybees. 'Hoefchen' 1999.

SXR/AM 006

GLP, unpublished

BIE2003-219

Y

BAY

 

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIIA-10.4

 

Schmuck, R., Schoening, R. and Schramel, O.

1999

Residue levels of imidacloprid and imidacloprid metabolites in nectar, blossoms and pollen of summer rape cultivated on soils with different imidacloprid residue levels and effects of these residues on foraging honeybees. Laacher Hof 1999.

SXR/AM 008

GLP, unpublished

BIE2003-222

Y

BAY

 

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIIA-10.4

 

Schmuck, R., Schoening, R. and Schramel, O.

1999

Residue levels of imidacloprid and imidacloprid metabolites in nectar, blossoms and pollen of summer rape cultivated on soils with different imidacloprid residue levels and effects of these residue on foraging honeybees. 'Hoefchen' 1999.

SXR/AM 010

GLP, unpublished

BIE2003-223

Y

BAY

 

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIIA-10.4

 

Schmuck, R., Schoening, R. and Schramel, O.

1999

Residue levels of imidacloprid and imidacloprid metabolites in pollen of maize plants cultivated on soils with different imidacloprid residue levels Test location: Farmland 'Hoefchen' - 1999.

SXR/AM 011

GLP, unpublished

BIE2003-221

Y

BAY

 

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIIA-10.4

 

Schmuck, R., Schoening, R. and Schramel, O.

1999

Residue levels of imidacloprid and imidacloprid metabolites in pollen of maize plants cultivated on soils with different imidacloprid residue levels. Test location: Farmland 'Laacher Hof' - 1999.

SXR/AM 009

GLP, unpublished

BIE2003-220

Y

BAY

 

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIIA-10.4

 

Schmuck, R., Schoening, R. and Schramel, O.

1999

Residue levels of imidacloprid and imidacloprid metabolites in nectar, blossoms and pollen of sunflowers cultivated on soils with different imidacloprid residue levels and effects on these residues on foraging honeybees. 'Laacher Hof' 199.

SXR/AM 007

GLP, unpublished

BIE2003-218

Y

BAY

 

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIIA-10.4

 

Schoening, R.

2002

Determination of residues of imidacloprid and relevant metabolites in nectar, pollen and honey of winter rape.

MR-147/01

GLP, unpublished

BIE2003-245

N

BAY

 

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIIA-10.4

 

Schoening, R.

2003

Residue levels of imidacloprid and imidacloprid metabolites in sunflower pollen, sunflower honey and bees from Gaucho treated sunflowers in the field.

MR-710/99

GLP, unpublished

BIE2003-244

Y

BAY

 

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIIA-10.4

 

Schuld, M.

2002

Field test: Side effects of oil-seed rape grown from seeds dressed with imidacloprid and beta-Cyfluthrin FS 500 on the honey bee (Apis mellifera L.).

99398/01-BFEU

GLP, unpublished

BIE2003-226

Y

BAY

 

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIIA-10.4

 

Schulz, A.

2000

Field trials with Gaucho in sunflowers - experiences from the region of Rheinhessen in 1999.

MO-03-011595

not GLP, published

BIE2003-227

N

-

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIIA-10.4;

AIIIA-10.4.4

 

Scott-Dupree, C.D., Spivak, M.S., Bruns, G., Blenskinsop, C. and Nelson, S.

2001

The impact of Gaucho and TI-435 seed-treated Canola on honey bees, Apis mellifera L.

110403

not GLP, unpublished

BIE2003-228

Y

BAY

 

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIIA-10.4

 

Stadler, T.

2000

Field evaluation in Argentina of possible risk for honey bees from the product Gaucho on sunflowes.

LPE-41/00

not GLP, unpublished

BIE2003-229

Y

BAY

 

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIIA-10.4

 

Stork, A.

1999

Residues of [14C]-NTN 33893 (imidacloprid) in blossoms of sunflower (Helianthus annuus) after seed dressing.

MR-550/99

GLP, unpublished

BIE2003-230

Y

BAY

 

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIIA-10.4

 

Szentes, C.

1999

Field test of Gaucho 350 FS seeddressed sunflowers on honeybee colonies.

3103/99

GLP, unpublished

BIE2003-234

Y

BAY

 

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIIA-10.4

 

Tasei, J.N.

2003

Impact of agrochemicals on non-Apis bees.

MO-03-011866

not GLP, unpublished

BIE2003-235

Y

BAY

 

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIIA-10.4

 

Thompson, H.M.

2000

Substance B: Feeding study with honey bees (Apis mellifera).

HT0400c

not GLP, unpublished

BIE2003-239

Y

BAY

 

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIIA-10.4

 

Thompson, H.M.

2000

Substance A - Acute oral toxicity to honey bee Apis mellifera.

HT0400b

not GLP, unpublished

BIE2003-238

Y

BAY

 

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIIA-10.4

 

Thompson, H.M.

2000

Substance C: Feeding study with honey bees (Apis mellifera).

HT0400d

not GLP, unpublished

BIE2003-240

Y

BAY

 

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIIA-10.4

 

Thompson, H.M.

2000

Substance A - Acute contact toxicity to honey bees (Apis mellifera).

HT0400a

not GLP, unpublished

BIE2003-237

Y

BAY

 

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIA-6.1;

AIIIA-10.4

 

Vogeler, K. and Brauner, A.

1993

Metabolism of NTN 33893 in cotton after seed treatment.

PF3675

GLP, unpublished

BIE2003-126

RIP2003-1679

Y

BAY

 

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIA-6.1;

AIIIA-10.4

 

Vogeler, K., Clark, T. and Brauner, A.

1992

Metabolism of [14C]-NTN 33893 in apples.

PF3676

GLP, unpublished

BIE2003-124

RIP2003-1677

Y

BAY

 

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIA-6.1;

AIIIA-10.4

 

Vogeler, K., Draeger, G. and Brauner, A.

1992

Investigation of the metabolism of NTN 33893 in potatoes following granular application.

PF3628

GLP, unpublished

BIE2003-129

RIP2003-1683

Y

BAY

 

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIIA-10.4

 

Wallner, K.

1999

Tests regarding the danger of the seed disinfectant, Gaucho, for bees.

MO-03-011452

not GLP, published

BIE2003-241

N

-

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIIA-10.4

 

Wilhelmy, H.

2000

Substance A - Acute effects on the honeybee Apis mellifera (Hymenoptera, Apidae).

IBA7240N

not GLP, unpublished

BIE2003-242

Y

BAY

 

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIIA-10.4

 

Wolf, T.J., Ellington, C.P. and Begley, L.S.

1998

Foraging costs in bumblebees: Field conditions cause large individual differences.

MO-03-011646

not GLP, published

BIE2003-246

N

-

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIA-6.1;

AIIIA-10.4

 

Yoshida, H.

1991

Metabolism of NTN 33893 in eggplant by planting hole application.

NR1290

GLP, unpublished

BIE2003-127

RIP2003-1680

Y

BAY

 

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIIA-10.4.3

 

Bakker, F.M.

2003

A multiple-rate cage test to study effects of Confidor SL 200 on honeybee (Apis mellifera L.) when applied to flowering Phacelia tanacetifolia 24, 48 and 96 hours before bee exposure.

B075AMS ! MO-03-005575

GLP, unpublished

BIE2003-153

Y

BAY

 

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIIA-10.4.3

 

Bakker, F.M.

2001

Confidor SL 200: a multiple rate cage study to determine effects on honeybees, Apis mellifera L, when applied to flowering Phacelia tanacetifolia.

B074AMS ! MO-01-022345

GLP, unpublished

BIE2003-152

Y

BAY

 

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIIA-10.4.3

 

Hancock, G.A., Fischer, D.L., Mayer, D.F. and Grace, T.J.

1992

NTN 33893: Toxicity to honey bees on alfalfa treated foliage.

103938 ! MO-99-009814

GLP, unpublished

BIE2003-137

Y

BAY

 

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIIA-10.4.4

 

Cantoni, A.

1998

Side effects of Confidor SL 200 on bees following one application to apple trees at the mouse-ear stage.

ITA-98-901

not GLP, unpublished

BIE2003-151

Y

BAY

 

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIIA-10.4.4

 

Schur, A.

2001

Assessment of side effectsc of Confidor SL 200 on the honey bee (Apis mellifera L.) in apple orchard following application before flowering (mouse-ear stage) of the crop.

20011099/01-BFEU ! MO-01-021827

GLP, unpublished

BIE2003-150

Y

BAY

 

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIIA-10.4.5

 

Schur, A.

2001

Tunnel test: Assessment of side effects of Confidor SL 200 on the honey bee (Apis mellifera L.) in apple orchard following application before flowering (mouse-ear stage) of the crop.

20011099/01-BZEU ! MO-01-020736

GLP, unpublished

BIE2003-154

Y

BAY

 

dossier PPP (DAR), from List of studies relied upon_version4_Final November 2008

AIIIA-10.5.1

 

Bielza, P., Contreras, J., Guerrero, M.M., Izquierdo, J., Lacasa, A. and Mansanet, V.

2000

Effects of Confidor 20 LS and Nemacur CS on bumblebees pollinating greenhouse tomatoes. IOBC/wprs Bulletin Vol. 24(4) 2001, Working Group “Pesticides and Beneficial Organisms”, Proceedings of the meeting at Castelló de la Plana (Spain), 18-20 October, 2000. Edited by: H. Vogt, E. Vinuela & J. Jacas. ISBN 92-9067-133-5

MO-00-016382

not GLP, published

ANA2003-426

N

-

 

 

 

Reference

Ref no.

Author(s)

Year

Title,

Source, Company Name, Owner, Date Report-No., Document-No., published or not

Data protection claimed

Y/N

Owner

Submitted to Ctgb in 2011 (CD 5167).

1

Schmuck

2003

R Schmuck _ pollinating bees - imidacloprid seed treatment.doc

Y

BCS

Submitted to Ctgb in 2011 (CD 5167).

3

Keppler, J.

2010

CRD Guttation 2010 01 21.ppt

Y

BCS

Submitted to Ctgb in 2011 (CD 5167).

4

Keppler, J.

2010

CTD & Dust.ppt

Y

BCS

Submitted to Ctgb in 2011 (CD 5167).

21

Nikolakis, A., Schoening, R.

2008

Drift deposition pattern of seed treatment particles

abraded from Poncho® Beta Plus treated sugar beet

pills and emitted by a typical mechanical sowing

machine

Generated by: Bayer CropScience AG, Monheim,

Germany

Owner: Bayer CropScience

Date: November 14, 2008

Amended: March 20, 2009

Document-No.: M-309580-02-1

Unpublished

Y

BCS

Submitted to Ctgb in 2011 (CD 5167).

22

Nikolakis, A.

2009

Relevance of guttation as a potential water source for

honey bees in neonicotinoid seed-treated sugar beet

Generated by: Bayer CropScience AG, Monheim,

Germany

Owner: Bayer CropScience

Date: September 04, 2009

Document-No.: M-355012-01-1

Unpublished

Y

BCS

Submitted to Ctgb in 2011 (CD 5167).

25

Faucon et. al.

2005

Experimental study on the toxicity of imidacloprid given in syrup to honey bee (Apis mellifera) colonies Pest Manag Sci 61:111–125 (2005)

Y

BCS

Submitted to Ctgb in 2011 (CD 5167).

26

Gobin et. al.

2008

Sublethal effects of crop protection onhoney bee pollination: foraging behaviour flower visits. Comm. Appl. Biol. Sci. Ghent University, 73/3, 2008

Y

BCS

Submitted to Ctgb in 2011 (CD 5167).

27

Nguyen et. al.

2009

Does Imidacloprid Seed-Treated Maize Have an Impact

on Honey

Bee Mortality?

J. Econ. Entomol. 102(2): 616Ð623 (2009)

Y

BCS

Submitted to Ctgb in 2011 (CD 5167).

28

Tasei et. al.

2000

Sub-lethal effects of imidacloprid on bumblebees, Bombus terrestris (Hymenoptera: Apidae), during a laboratory feeding test Pest Manag Sci 56:784±788 (2000)

Y

BCS

Submitted to Ctgb in 2011 (CD 5167).

29

Tasei et. al.

2001

Hazards of Imidacloprid Seed Coating to Bombus

terrestris (Hymenoptera: Apidae) when Applied to

Sunflower

J. Ecol. Entomol. 94(3):623-627 (2001)

Y

BCS

Submitted to Ctgb in 2011 (CD 5167).

30

Visser et. al.

2010

Survival rate of honeybee (Apis mellifera)

workers after exposure to sublethal

concentrations of imidacloprid

PROC. NETH. ENTOMOL. SOC. MEET. - VOLUME 21

- 2010

Y

BCS

Submitted to Ctgb in 2011 (CD 5167).

31

Wehling et. al.

2006

Intoxication of honeybees – Interactions of plant protections products and other factors Proceedings of the second European conference of apidology EurBee, Prague, Czech republic, 10-16 sept. 2006.

Y

BCS

Submitted to Ctgb in 2009. Report no. 6840.

n.a.

A. Nikolakis R. Schoening

2008

Drift deposition pattern of seed treatment particles abraded from Clothianidin FS 600 dressed maize seeds and emitted by different modified and un-modified pneumatic and mechanical sowing machines. NAX/SP03-2008, 2008-10-20.

Y

BCS

 

 

Relevant studies from the European dossier for imidacloprid as a biocide (CAR) (from REV_reference_list_section_Imi.pdf).

 

 

Reference

Annex point /

reference number

Author(s)

Year

Title

Source (where different from company)

Company name, Report No., Date, GLP status (where relevant), published or not

Data protection claimed

Y/N

Owner

Submitted to Ctgb on 28/04/2011 (CD 5172).

April - /08

Nikolakis, A.; Przygoda, D.; Freitag, Th.; Schoening, R.

2011

Determination of residue levels of imidacloprid, imidacloprid-monohydroxy and imidacloprid-olefine in bee relevant matrices of winter rape in a cereal succeeding crop scenario at Bayer CropScience AG experimental farm Laacher Hof, Germany

Bayer CropScience,

Report No.: E 319 3388-5,

Edition Number: M-406075-01-1

Date: 2011-04-27

GLP, unpublished

Y

BCS

Submitted to Ctgb on 28/04/2011 (CD 5172).

April - /09

Nikolakis, A.; Przygoda, D.; Freitag, Th.; Schoening, R.

2011

Determination of residue levels of imidacloprid, imidacloprid-monohydroxy and imidacloprid-olefine in bee relevant matrices of winter rape in a cereal succeeding crop scenario at Bayer CropScience AG experimental farm Höfchen, Germany

Bayer CropScience,

Report No.: E 319 3387-4,

Edition Number: M-406083-01-1

Date: 2011-04-27

GLP, unpublished

Y

BCS

Reference

Annex point /

reference number

Author(s)

Year

Title

Source (where different from company)

Company name, Report No., Date, GLP status (where relevant), published or not

Y

BCS

Submitted to Ctgb on 26/05/2011 (CD 5182).

May - /10

Cantoni, A.

1998

Side effects of Confidor SL 200 on bees following one application to apple trees at the mouse-ear stage

Bayer S. P. A., Milano Viale Certosa, Italy

Bayer CropScience,

Report No.: ITA-98-901,

Edition Number: M-064758-02-1

Date: 1998-10-06

...Amended: 2009-09-16

Non GLP, unpublished

Y

BCS

Submitted to Ctgb on 26/05/2011 (CD 5182).

May - /11

Cantoni, A.;  Schmidt, H.-W.;  Gilli, J.

2001

Bee-friendly use of Confidor + oliocin in apple cultivation in Italy

Publisher:Bayer CropScience AG,

Location:Leverkusen, Germany,

Journal:Pflanzenschutz-Nachrichten Bayer,

Volume:54,

Issue:3,

Pages:353-368,

Year:2001,

Report No.: Lit. 9209,

Edition Number: M-355844-01-1

Non GLP, published

Y

BCS

Submitted to Ctgb on 01/06//2011 (by e-mail).

n.a.

Nauen, R. and Kwiatkowski.

2008

Imidacloprid residue movement in plants following foliar applications and the implications for potential bee exposure.

Bayer CropScience,

Edition Number: M-308631-01-1

Date: 2008-10-08

 

Y

BCS

Submitted to Ctgb on 01/06/2011 (by e-mail).

n.a.

Vacante, V.

1997

The influence of Imidacloprid on the impollination of the tomato with Bombus terrestris

Generated by: University of Tuscia, Viterbo, Italy

Owner: Bayer CropScience

Date: Year 1997

Document No.: M-304435-01-2

Non-GLP, published

Y

BCS

 


Appendix II. Public literature

A public literature survey on the effects of neonicotinoids and fipronil on bee mortality and decline is in development under the authority of the Ministry of Economy, Agriculture and Innovation (EL&I). The preliminary results of this survey have been used for this risk assessment. Literature consulted is shown below.

 

 

Literature

 

Alaux C, Brunet J-L, Dussaubat C, Mondet F, Tchamitchan S, Cousin M, Brillard J, Baldy A, Belzunces LP & LeConte Y, 2010. Interactions between Nosema microspores and a neonicotinoid weaken honeybees (Apis mellifera). Environm. Microbiology 12(3),774-782.

Alaux C, F Ducloz, D Crauser & Y Le Conte 2010. Diet effects on honeybee immunocompetence. Biology Letters online doi: 10.1098/rsbl.2009.0986

Aliouane Y, Adessalam K, El Hassani AK, Gary V, Armengaud C, Lambin M, Gauthier M. 2009. Subchronic exposure of honeybees to sublethal doses of pesticides: effect on behavior. Environ Toxicol Chem 28: 113-122.

Bacandritsos N, Granato A, Budge G, Papanastasiou I, Roinioti E, Caldon M, Falcaro C, Gallina A, Mutinelli F. 2010. Sudden deaths and colony population decline in Greek honey bee colonies. Journal of Invertebrate Pathology 105:335-340.

Bailey J, Scott-Dupree C, Harris R, Tolman J, Haris B. 2005. Contact and oral toxicity to honey bees (Apis mellifera) of agents registered for use for sweet corn insect control in Ontario, Canada. Apidologie 36: 623-633.

Bernadou A, Démares F, Couret-Fauvel T, Sandoz JC, Gauthier M. 2009. Effect of fipronil on side-specific antennal tactile learning in the honeybee. J Insect Physiol: 1099-1106.

Bernal J, Garrido-Bailon E, del Nozal MJ, Gonzalez-Porto AV, Martin-Hernandez R, Diego JC, Jimenez JJ, Bernal JL, Higes M. 2010. Overview of pesticide residues in stored pollen and their potential effect on bee colony (Apis mellifera) losses in Spain. Journal of Economic Entomology 103:1964-1971.

Bernal J, Martin-hernadez R, Diego JC, Nozal MJ, Gozalez-Porto AV, Bernal JL & Higes M, 2011. An exposure study to assess the potential impact of fipronil in treated sunflower seeds on honey bee colony losses in Spain. Pest Manag Sci on line, DOI10.1002/ps.2188

Bonmatin JM, Moineau I, Charvet R, Fleche C, Colin ME, Bengsch ER. 2003. A LC/APCI-MS/MS method for analysis of imidacloprid in soils, in plants, and in pollens. Analytical Chemistry 75:2027-2033.

Bonmatin JM, PA Marchand, R Charvet, I Moineau, ER Bengsch & ME Colin 2005. Quantification of imidacloprid uptake in maize crops. J. Agric Food Chem 53, 5336-41

Bortolotti, L, Montanari R, Marcelino J, Medrzycki P, Maini S & Porrini C 2003. Effects of sub-lethal imidacloprid doses on the homing rate and foraging activity of honey bees. Bulletin of Insectology 56, 63-67

Brunet JL, Badiou A, Belzunces LP. 2005. In vivo metabolic fate of [C-14]-acetamiprid in six biological compartments of the honeybee, Apis mellifera L. Pest Management Science 61:742-748.

Charvet R, Katouzian-Safadi M, Colin ME, Marchand PA, Bonmatin JM. 2004. Systemic insecticides: New risk for pollinator insects. Annales Pharmaceutiques Francaises 62:29-35.

Chaton PF, Ravanel P, Meyran JC, Tissut M. 2001. The toxicological effects and bioaccumulation of fipronil in larvae of the mosquito Aedes aegypti in aqueous medium. Pesticide Biochemistry and Physiology 69:183-188.

Chauzat MP, Carpentier P, Martel AC, Bougeard S, Cougoule N, Porta P, Lachaize J, Madec F, Aubert M, Faucon JP. 2009. Influence of pesticide residues on honey bee (Hymenoptera: Apidae) colony health in France. Environmental Entomology 38:514-523.

Chauzat MP, Faucon JP, Martel AC, Lachaize J, Cougoule N, Aubert M. 2006. A survey of pesticide residues in pollen loads collected by honey bees in France. Journal of Economic Entomology 99:253-262.

Chauzat MP, Martel AC, Cougoule N, Porta P, Lachaize J, Zeggane S, Aubert M, Carpentier P, Faucon JP. 2011. An assessment of honeybee colony matrices, Apis mellifera (Hymenoptera Apidae) to monitor pesticide presences in continental France. Environmental Toxicology and Chemistry 30:103-111.

Chauzat, M. P., J. P. Faucon, A. C. Martel, J. Lachaize, N. Cougoule, and M. Aubert. 2006. A survey on pesticide residues in pollen loads collected by honey-bees (Apis mellifera) in France. J. Econ. Entomol. 99: 253-262.

Chauzat, MP, Carpentier P, Martel AM, Bougeard S, Cougoule N, Porta P, LaChaize J, Madec F, Aubert M & Faucon JP 2009. Influence of Pesticide Residues on Honey Bee (Hymenoptera: Apidae) Colony Health in France. Environ. Entomol. 38(3): 514-523

Choudhary A, Sharma DC. 2008. Dynamics of pesticide residues in nectar and pollen of mustard (Brassica juncea (L.) Czern.) grown in Himachal Pradesh (India). Environmental Monitoring and Assessment 144:143-150.

Comité Scientifique et Technique de l’Etude Multifactorielle des Troubles des abeilles (CST), 2003. Imidaclopride utilisé en enrobage de semences (Gaucho®) et troubles des abeilles. Rapport final. 106 pp.

Cresswell JE (1999) The influence of nectar and pollen availability on pollen transfer by individual flowers of oil-seed rape (Brassica napus) when pollinated by bumblebees (Bombus lapidarius). J Ecol 87:670–677

Cresswell JE. 2011. A meta-analysis of experiments testing the effects of neonicotinoid insecticide (imidacloprid) on honey bees. Ecotoxicology 20: 149-157.

Cutler GC & Scott-Dupree CD, 2007. Exposure to Clothianidin seed treated canola has no long-term impact on honey bees. J. Econ. Entomol 100, 765-772

Cutler GC, Scott-Dupree CD. 2007. Exposure to clothianidin seed-treated canola has no long-term impact on honey bees. Journal of Economic Entomology 100:765-772.

De la Rúa P., R. Jaffé, R. Dall’Olio, I. Muñoz & J. Serrano 2009. Biodiversity, conservation and current threats to European honeybees. Review. Apidologie 40, 263-284

Decourtye A & Devillers J 2010. Ecotoxicity of neonicotinoid insecticides to bees. In: ST Thany (ed.) “Insect nicotinic acetylcholine receptors” Landes Bioscience and Springer Science + Business media. pp. 85-95.

Decourtye A, Armengaud C, Renou M, Devillers J, Cluzeau S, Gauthier M, Pham-Delègue M-H. 2004b. Imidacloprid impairs memory and brain metabolism in the honeybee (Apis mellifera L.). Pestic Biochem Physiol 78: 83-92.

Decourtye A, Devillers J, Aupinel P, Brun F, Bagnis C, Fourrier J, Gauthier M. 2011. Honeybee tracking with microchips: a new methodology to measure the effects of pesticides. Ecotoxicology 20: 429-437.

Decourtye A, Devillers J, Cluzeau S et al. 2004a. Effects of imidacloprid and deltamethrin on associative learning in honeybees under semi-field and laboratory conditions. Ecotoxicol Environ Saf 57: 410-419.

Decourtye A, Devillers J, Genecque E, Le Menach K, Budzinski H, Cluzeau S, Pham-Delegue MH. 2005. Comparative sublethal toxicity of nine pesticides on olfactory learning performances of the honeybee Apis mellifera. Arch Environ Contam Toxicol 48: 242-250.

Decourtye A, Lacassie E, Pham-Delegue MH. 2003. Learning performances of honeybees (Apis mellifera L.) are differentially affected by imidacloprid according to the season. Pest Manag Sci 59: 269-278.

Decourtye A, Le Metayer M, Pottiau H, Tisseur M, Odoux JF, Pham-Delegue MH. 2001. Impairment of olfactory learning performances in the honey bee after long term ingestion of imidacloprid. Hazard of Pesticides to Bees, 113-117.

Decourtye A, Mader E, Desneux N, 2010 Landscape enhancement of floral resources for honey bees in agro-ecosystems. Apidologie 41, 264–277

Durham EW, Siegfried BD, Scharf ME. 2002. In vivo and in vitro metabolism of fipronil by larvae of the European corn borer Ostrinia nubilalis. Pest Management Science 58:799-804.

El Hassani AK, Dacher M, Garry V et al. 2008. Effects of sublethal doses of acetamiprid and thiamethoxam on the behavior of the honeybee (Apis mellifera). Arch Environ Contam Toxicol 54: 653-661.

El Hassani AK, Dacher M, Gauthier M, Armengaud C. 2005. Effects of sublethal doses of fipronil on the behavior of the honeybee (Apis mellifera). Pharmacol Biochem Behav 82: 30-39.

El Hassani AK, Dupuis JP, Gauthier M, Armengaud C. 2009. Glutamatergic and GABAergic effects of fipronil on olfactory learning and memory in the honeybee. Invert Neurosci 9: 91-100.

Elbert C, Erdelen C, Kuehnhold J, Nauen R, Schmidt HW, Hattori Y. 2000. Thiacloprid: a novel neonicotinoids insecticide for foliar application. Brighton Crop Protection Conference, Brighton, UK. Pest and Diseases 2(a): 21-26.

Fang Q, Huang CH, Ye GY, Yao HW, Cheng JA, Akhtar ZR. 2008. Differential fipronil susceptibility and metabolism in two rice stem borers from China. Journal of Economic Entomology 101:1415-1420.

Faucon J-P, Aurières C, Drajnudel P, Mathieu L, Ribière M, Martel A-C, Zeggane S, Chauzat M-P, Aubert MFA. 2005. Experimental study on the toxicity of imidacloprid given in syrup to honey bee (Apis mellifera) colonies. Pest Manag Sci 61: 111-125.

Faucon, J. P., C. Aurières, P. Drajnudel, L. Mathieu, M.Ribière, A. C. Martel, S. Zeggane, M. P. Chauzat, and M.Aubert. 2005. Experimental study on the toxicity of imidacloprid given in syrup to honey bee (Apis mellifera) colonies. Pest Manag. Sci. 61: 111-125

Garcia-Chao M, Jesus Agruna M, Flores Calvete G, Sakkas V, Llompart M, Dagnac T. 2010. Validation of an off line solid phase extraction liquid chromatography-tandem mass spectrometry method for the determination of systemic insecticide residues in honey and pollen samples collected in apiaries from NW Spain. Analytica Chimica Acta 672(1-2, Sp. Iss. SI).

Genersch E, 2010. Honey bee pathology: current threats to honey bees and beekeeping. Appl Microbiol Biotechnol 87, 87-97

Genersch E, Von der Ohe W, Kaatz H, Schroeder A, Otten C, Büchler R, Berg S,Ritter W, Mühlen W, Gisder S, Meixner M, Liebig G, Rosenkranz P 2010. The German bee monitoring project: a long term study to understand periodically high winter losses of honey bee colonies. Apidologie 41, 332–352

Girolami V, Mazzon L, Squartini A, Mori N, Marzaro M, Di Bernardo A, Greatti M, Giorio C, Tapparo A. 2009. Translocation of Neonicotinoid insecticides from coated seeds to seedling guttation drops: a novel way of intoxication for bees. Journal of Economic Entomology 102:1808-1815.

Guez D, Suchail S, Gauthier M, Maleszka R, Belzunces LP (2001) Contrasting effects of imidacloprid on habituation in 7- and 8-day-old honeybees (Apis mellifera). Neurobiol Learn Mem 76: 183-191.

Halm MP, Rortais A, Arnold G, Tasei JN, Rault S. 2006. New risk assessment approach for systemic insecticides: The case of honey bees and imidacloprid (Gaucho). Environmental Science & Technology 40:2448-2454.

Hendrikx, Chauzat, Debin, Neuman, Fries, Ritter, Borwn, Mutinelli, Le Conte, Gregorc 2009. Scientific report submitted to EFSA. Bee morlitaty and bee surveillance in Europe. CFP/EFSA/AMU/2008/02. Accepted for publication 03 December 2009.

Higes M, Martin-Hernandez R, Martinez-Salvador A, Garrido-Bailon E, Gonzalez-Porto AV, Meana A, Bernal JL, del Nozal MJ, Bernal J. 2010. A preliminary study of the epidemiological factors related to honey bee colony loss in Spain. Environmental Microbiology Reports 2:243-250.

Iwasa T, Motoyama N, Ambrose JT et al (2004) Mechanism for the differential toxicity of neonicotinoid insecticides in the honey bee, Apis mellifera. Crop Prot 23: 371-378.

Johnson RM, Ellis MD, Mullin CA & Frazier M 2010. Pesticides and honey bee toxicity – USA. Apidologie 41, 312-331

Kadar A, Faucon JP. 2006. Determination of traces of fipronil and its metabolites in pollen by liquid chromatography with electrospray ionization-tandem mass spectrometry. Journal of Agricultural and Food Chemistry 54:9741-9746.

Kluser S, Neumann P, Chauzat M-P & Pettis JS 2011. UNEP Emerging Issues: Global Honey Bee Colony Disorder and Other Threats to Insect Pollinators. www.unep.org; 12 pages

Krischik VA, Landmark AL, Heimpel GE. 2007. Soil-applied imidacloprid is translocated to nectar and kills nectar-feeding Anagyrus pseudococci (Girault) (Hymenoptera : Encyrtidae). Environmental Entomology 36:1238-1245.

Lambin M, Armengaud C, Raymond S, Gauthier M (2001) Imidacloprid-induced facilitation of the proboscis extension reflex habituation in the honeybee. Arch Insect Biochem Physiol 48: 129-134.

Laurent FM, Rathahao E. 2003. Distribution of [C-14]imidacloprid in sunflowers (Helianthus annuus L.) following seed treatment. Journal of Agricultural and Food Chemistry 51:8005-8010.

Li X, Bao C, Yang D, Zheng M, Li X, Tao S 2010. Toxicities of fipronil enantiomers to the honeybee Apis mellifera L and enantiomeric compositions of fipronil in honey plant flowers. Environ Toxicol Chem 29: 127-132.

Maini S, Medrzycki P & Porrini C, 2010. The puzzle of honey bee losses: a brief review. Bull of Insectology 63, 153-160

Maxim L & Van der Sluis JP 2007. Uncertainty: cause or effect of stakeholders’ debates? Analysis of a case study: the risk for honeybees of the insecticide Gaucho®.  Science of the Total Environment 376, 1-17      

Mayer DF, Lunden JD. 1999. Field and laboratory tests of the effects of fipronil on adult female bees of Apis mellifera, Megachile rotundata and Nomia melanderi. J Apicult Res 38: 191-197.

Morandin LA & Winston ML 2003. Effects of novel pesticides on bumble bee (Hymenoptera: Apidae) colony health and foraging ability. Environ Entomol 32, 555-63

Mullin CA, Frazier M, Frazier JL, Ashcraft S, Simonds R, vanEngelsdorp D, Pettis JS. 2010. High Levels of miticides and agrochemicals in North American apiaries: implications for honey bee health. Plos One 5(3).

Mullin CA, Frazier M, Frazier JL, Ashcroft S, Simonds R, vanEngelsdorp, D & Pettis JS 2010. High levels of miticides and agrochemicals in North American apiaries: implications for honey bee health. PlosOne 5(3), e9754. doi:10.1371

Nauen R, Ebbinghaus-Kintscher U, Schmuck R. 2001. Toxicity and nicotinic acetylcholine receptor interaction of imidacloprid and its metabolites in Apis mellifera (Hymenoptera: Apidae). Pest Manag Sci 57: 577-586.

Neumann P & Carreck NL 2010. Honey bee colony losses. Journal of Apicultural Research 49, 1-6

Nguyen BK, Saegerman C, Pirard C, Mignon J, Widart J, Thirionet B, Verheggen FJ, Berkvens D, De Pauw E & Haubruge E. 2009. Does Imidacloprid Seed-Treated Maize Have an Impact on Honey Bee Mortality? J. Econ. Entomol. 102(2): 616-623

Nguyen BK, Saegerman C, Pirard C, Mignon J, Widart J, Tuirionet B, Verheggen FJ, Berkvens D, De Pauw E, Haubruge E. 2009. Does imidacloprid seed-treated maize have an impact on honey bee mortality? Journal of Economic Entomology 102:616-623.

Pirard C, Widart J, Nguyen BK, Deleuze C, Heudt L, Haubruge E, De Pauw E, Focant JF. 2007. Development and validation of a multi-residue method for pesticide determination in honey using on-column liquid-liquid extraction and liquid chromatography-tandem mass spectrometry. Journal of Chromatography A 1152:116-123.

Ramirez-Romero R, Chaufaux J, Pham-Delegue MH (2005) Effects of Cry1Ab protoxin, deltamethrin and imidacloprid on the foraging activity and the learning performances of the honeybee Apis mellifera, a comparative approach. Apidologie 36: 601-611.

Rortais  A, Arnold G, Halm MP, Touffet-Briens, F 2005. Modes of Honeybees exposure to systemic insecticides: estimated amounts of contaminated pollen and nectar consumed by different categories of bees. Apidologie 36, 71-83

Rortais A, Arnold G, Halm MP, Touffet-Briens F. 2005. Modes of honeybees exposure to systemic insecticides: estimated amounts of contaminated pollen and nectar consumed by different categories of bees. Apidologie 36:71-83.

Scharf ME, Siegfried BD, Meinke LJ, Chandler LD. 2000. Fipronil metabolism, oxidative sulfone formation and toxicity among organophosphate- and carbamate-resistant and susceptible western corn rootworm populations. Pest Management Science 56:757-766.

Schmuck R (1999) No causal relationship between Gaucho seed dressing in sunflowers and the French bee syndrome. Pflanzenschutz Nachrichten Bayer 52: 257-299.

Schmuck R, Schoning R, Stork A, Schramel O et al (2001) Risk posed to honeybees (Apis mellifera L. Hymenoptera) by an imidacloprid seed dressing of sunflowers. Pest Manag Sci 57: 225-238.

Schmuck R, Schoning R, Stork A, Schramel O. 2001. Risk posed to honeybees (Apis mellifera L. Hymenoptera) by an imidacloprid seed dressing of sunflowers. Pest Management Science 57:225-238.

Scott-Dupree CD, Conroy L & Harris CR 2009. Impact of currently used or potentially useful insecticides for canola agroecosystems on Bombus impatiens, Megachile rotundata and Osmia lignaria. J Econ Entomol. 102, 177-182

Smodis Skerl MI, Velikonja Bolta S, Basa Cesnik H, Gregorc A. 2009. Residues of Pesticides in honeybee (Apis mellifera carnica) bee bread and in pollen loads from treated apple orchards. Bulletin of Environmental Contamination and Toxicology 83:374-377.

Stark JD, Jepson PC, Mayer DF. 1995. Limitation to the use of topical toxicity data for prediction of pesticide side-effect in the field. J Econ Entomol: 1081-1088.

Suchail S, De Sousa G, Rahmani R, Belzunces LP. 2004a. In vivo distribution and metabolisation of C-14-imidacloprid in different compartments of Apis mellifera L. Pest Management Science 60:1056-1062.

Suchail S, Debrauwer L, Belzunces LP. 2004b. Metabolism of imidacloprid in Apis mellifera. Pest Management Science 60:291-296.

Suchail S, Guez D and Belzunces LP. 2001. Discrepancy between acute and chronic toxicity induced by imidacloprid and its metabolites in Apis mellifera. Environ Toxicol Chem 20: 2482-2486.

Suchail S, Guez D, Belzunces LP. 2000. Characteristics of imidacloprid toxicity in two Apis mellifera subspecies. Environmental Toxicology and Chemistry 19: 1901-1905.

Tasei JN, Lerin J & Ripault G 2000. Sub-lethal effects of imidacloprid on bumblebees, Bombus terrestris (Hymenoptera: Apidae), during a laboratory feeding test. Pest Manag Sci 56, 784-788

Tasei JN, Ripault G & Rivault E 2001. Hazards of imidacloprid seed coating to Bombus terrestris (Hymenoptera: Apidae) when applied to sunflower. J Econ Entomol 94, 623-627

Thompson HM. 2010. Risk assessment for honey bees and pesticides—recent developments and ‘new issues’. Pest Management Science 66:1157-1162.

 

Van der Zee (2010). Colony losses in the Netherlands. Journal of Apicultural Research 49(1): 121-123

Van der Zee & Pisa (2011). Monitor Bijensterfte Nederland 2009-2010. NBC rapporten 2011 nr 1.

Visser, A 2009. Subletale effecten van neonicotinen. Bijennieuws 12, juli 2009. Electronische Nieuwsbrief bijen@wur

Visser, A 2010 Invloed van imidaclopridresiduen in oppervlaktewater op bijensterfte in Nederland. Rapport CAH Dronten opleiding Dier- en gezondheidszorg. 61 pagina’s

Von Der Ohe, W & Janke M 2009 Bienen im Stress. Schäden entstehen wenn verschiedene Faktoren zusammen kommen. Algemeine Deutsche ImkerZeitung 2009/4, 10-11.

Wu JY, Anelli CM & Sheppard WS, 2011. Sub-lethal effects of pesticide residues in brood comb on worker honey bee (Apis mellifera) development and longevity. PlosOne 6 (2), e14720.

Yang  EC, Chuang YC, Chen YL & Chang LH 2008. Abnormal foraging behavior induced by sublethal dosage of  imidacloprid in the honey bee (Hymenoptera: Apidae). J Econ Entomol 101, 1743-48

Yang EC, Chuang YC, Cheng YL et al. 2008. Abnormal foraging behavior induced by sublethal dosage of imidacloprid in the honey bee (Hymenoptera: Apidae). J Econ Entomol 101: 1743-1748.

 


Appendix III – Abbreviations used in the list of endpoints and risk assessment

 

ANSES

l’Agence nationale de sécurité sanitaire de l’Alimentation de l’Environnement et du Travail

a.s.

active substance

CAR

Competent Authority Report

d

day

DAR

draft assessment report

DT50

period required for 50 percent dissipation (define method of estimation)

DT90

period required for 90 percent dissipation (define method of estimation)

EC50

effective concentration

EEC

European Economic Community

EFSA

European Food Safety Authority

EPPO

European and Mediterranean Plant Protection Organization

ER50

emergence rate, median

ESD

Emission Scenario Document

EU

European Union

FOCUS

Forum for the Co-ordination of Pesticide Fate Models and their Use

GAP

good agricultural practice

GS

growth stage

h

hour(s)

ha

hectare

HQ

hazard quotient

L

litre

LC50

lethal concentration, median

LD50

lethal dose, median; dosis letalis media

LOAEL

lowest observable adverse effect level

LOD

limit of detection

LoE

List of Endpoints

LOQ

limit of quantification (determination)

m

meter

µg

microgram

ng

nanogram

NOAEL

no observed adverse effect level

NOEC

no observed effect concentration

NOEL

no observed effect level

OSR

oilseed rape

PEC

predicted environmental concentration

PECA

predicted environmental concentration in air

PECS

predicted environmental concentration in soil

PECSW

predicted environmental concentration in surface water

PECGW

predicted environmental concentration in ground water

ppm

parts per million (10-6)

ppb

parts per billion (10-9)

ppp

plant protection product

PRI

Plant Research International, Wageningen UR

RGB

Regeling gewasbeschermingsmiddelen en biociden

TER

toxicity exposure ratio

WHO

World Health Organisation

WG

water dispersible granule

yr

year

 

 

 

8.                  Efficacy

 

n.a.

 

 

9.                  Conclusion

 

The product complies with the Uniform Principles.

 

The evaluation is in accordance with the Uniform Principles laid down in appendix VI of Directive 91/414/EEC. The evaluation has been carried out on basis of a dossier that meets the criteria of appendix III of the Directive.

 

 

10.             Classification and labelling

Classification and labeling does not change.


Reference list

 

See Chapter 7